Skip to main content

CO-FISH, COD-FISH, ReD-FISH, SKY-FISH

  • Protocol
  • First Online:
Telomeres and Telomerase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 735))

Abstract

Fluorescence in situ hybridization (FISH) has become a powerful tool for exploring genomes at the level of chromosomes. The procedure can be used to identify individual chromosomes, rearrangements between chromosomes, and the location within a chromosome of specific DNA sequences such as centromeres, telomeres, and even individual genes. Chromosome orientation FISH (CO-FISH) extends the information obtainable from standard FISH to include the relative orientation of two or more DNA sequences within a chromosome (Goodwin and Meyne, Cytogenet Cell Genet 63:126–127, 1993). In combination with a suitable reference probe, CO-FISH can also determine the absolute 5′–3′ direction of a DNA sequence relative to the short arm (pter) to long arm (qter) axis of the chromosome. This variation of CO-FISH was originally termed “COD-FISH” (Chromosome orientation and direction FISH) to reflect this fact (Meyne and Goodwin, Chromosome Research 3:375–378, 1995). Telomeric DNA serves as a convenient and absolute reference probe for this purpose, since all G-rich 5′-(TTAGGG) n -3′ telomeric sequences are terminally located and oriented away from the centromere.

In the beginning, CO-FISH was used to detect obligate chromosomal inversions associated with isochromosome formation (Bailey et al., Mutagenesis 11:139–144, 1996), various pericentric inversions (Bailey et al., Cytogenetics and Cell Genetics 75:248–253, 1996), and to confirm the origin of centromeric lateral asymmetry (Goodwin et al., Chromosoma 104:345–347, 1996). More recent and sophisticated applications of CO-FISH include distinction between telomeres produced via leading- vs. lagging-strand DNA synthesis (Bailey et al., Science 293:2462–2465, 2001), identification of interstitial blocks of telomere sequence that result from inappropriate fusion to double-strand breaks (telomere–DSB fusion) (Bailey et al., DNA Repair (Amst) 3:349–357, 2004), discovery of elevated rates of mitotic recombination at chromosomal termini (Cornforth and Eberle, Mutagenesis, 16:85–89, 2001) and sister chromatid exchange within telomeric DNA (T-SCE) (Bailey et al., Nucleic Acids Res 32:3743–3751, 2004), establishing replication timing of mammalian telomeres throughout S-phase (ReD-FISH) (Cornforth et al., In: Cold Spring Harbor Symposium: Telomeres and Telomerase, Cold Spring Harbor, NY, 2003; Zou et al., Proc Natl Acad Sci USA 101:12928–12933, 2004) and in combination with ­spectral karyotyping (SKY-CO-FISH) (Williams et al., Cancer Res 69:2100–2107, 2009). For more information, the reader is referred to several reviews (Bailey et al., Cytogenet Genome Res 107, 14–17, 2004; Bailey and Cornforth, Cell Mol Life Sci 64:2956–2964, 2007; Bailey, Telomeres and Double-Strand Breaks – All’s Well that “Ends” Well, Radiat Res 169:1–7, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodwin, E., and Meyne, J. (1993) ­Strand-specific FISH reveals orientation of chromosome 18 alphoid DNA, Cytogenet Cell Genet 63, 126–127.

    Article  PubMed  CAS  Google Scholar 

  2. Meyne, J., and Goodwin, E. H. (1995) Direction of DNA-Sequences Within Chro­matids Determined Using Strand-Specific Fish, Chromosome Research 3, 375–378.

    Article  PubMed  CAS  Google Scholar 

  3. Bailey, S. M., Goodwin, E. H., Meyne, J., and Cornforth, M. N. (1996) CO-FISH reveals inversions associated with isochromosome formation, Mutagenesis 11, 139–144.

    Article  PubMed  CAS  Google Scholar 

  4. Bailey, S. M., Meyne, J., Cornforth, M. N., McConnell, T. S., and Goodwin, E. H. (1996) A new method for detecting pericentric inversions using COD-FISH, Cytogenetics and Cell Genetics 75, 248–253.

    Article  PubMed  CAS  Google Scholar 

  5. Goodwin, E. H., Meyne, J., Bailey, S. M., and Quigley, D. (1996) On the origin of lateral asymmetry, Chromosoma 104, 345–347.

    Article  PubMed  CAS  Google Scholar 

  6. Bailey, S. M., Cornforth, M. N., Kurimasa, A., Chen, D. J., and Goodwin, E. H. (2001) Strand-specific postreplicative processing of mammalian telomeres, Science 293, 2462–2465.

    Article  PubMed  CAS  Google Scholar 

  7. Bailey, S. M., Cornforth, M. N., Ullrich, R. L., and Goodwin, E. H. (2004) Dysfunctional mammalian telomeres join with DNA ­double-strand breaks, DNA Repair (Amst) 3, 349–357.

    Article  CAS  Google Scholar 

  8. Cornforth, M. N., and Eberle, R. L. (2001) Termini of human chromosomes display elevated rates of mitotic recombination, Mutagenesis, 85–89.

    Google Scholar 

  9. Bailey, S. M., Brenneman, M. A., and Goodwin, E. H. (2004) Frequent recombination in telomeric DNA may extend the proliferative life of telomerase-negative cells, Nucleic Acids Res 32, 3743–3751.

    Article  PubMed  CAS  Google Scholar 

  10. Cornforth, M. N., Eberle, R. L., Loucas, B. D., Fox, M. H., and Bailey, S. M. (2003) Replication timing of mammalian telomeres as revealed by strand-specific FISH, In Cold Spring Harbor Symposium: Telomeres and Telomerase, Cold Spring Harbor, NY.

    Google Scholar 

  11. Zou, Y., Gryaznov, S. M., Shay, J. W., Wright, W. E., and Cornforth, M. N. (2004) Asynchronous replication timing of telomeres at opposite arms of mammalian chromosomes, Proc Natl Acad Sci U S A 101, 12928–12933.

    Article  PubMed  CAS  Google Scholar 

  12. Williams, E. S., Klingler, R., Ponnaiya, B., Hardt, T., Schrock, E., Lees-Miller, S. P., Meek, K., Ullrich, R. L., and Bailey, S. M. (2009) Telomere dysfunction and DNA-PKcs deficiency: characterization and consequence, Cancer Res 69, 2100–2107.

    Article  PubMed  CAS  Google Scholar 

  13. Bailey, S. M., Goodwin, E. H., and Cornforth, M. N. (2004) Strand-specific fluorescence in situ hybridization: the CO-FISH family, Cytogenet Genome Res 107, 14–17.

    Article  PubMed  CAS  Google Scholar 

  14. Bailey, S. M., and Cornforth, M. N. (2007) Telomeres and DNA double-strand breaks: ever the twain shall meet?, Cell Mol Life Sci 64, 2956–2964.

    Article  PubMed  CAS  Google Scholar 

  15. Bailey, S. M. (2008) Telomeres and Double-Strand Breaks – All’s Well that “Ends” Well, Radiat Res 169, 1–7.

    Article  PubMed  CAS  Google Scholar 

  16. Bechter, O. E., Zou, Y., Walker, W., Wright, W. E., and Shay, J. W. (2004) Telomeric recombination in mismatch repair deficient human colon cancer cells after telomerase inhibition, Cancer Res 64, 3444–3451.

    Article  PubMed  CAS  Google Scholar 

  17. Londono-Vallejo, J. A., Der-Sarkissian, H., Cazes, L., Bacchetti, S., and Reddel, R. R. (2004) Alternative lengthening of telomeres is characterized by high rates of telomeric exchange, Cancer Res 64, 2324–2327.

    Article  PubMed  CAS  Google Scholar 

  18. Blagoev, K. B., and Goodwin, E. H. (2008) Telomere exchange and asymmetric segregation of chromosomes can account for the unlimited proliferative potential of ALT cell populations, DNA Repair (Amst) 7, 199–204.

    Article  CAS  Google Scholar 

  19. Hagelstrom, R. T., Blagoev, K. B., Niedernhofer, L. J., Goodwin, E. H., and Bailey, S. M. (2010) Hyper telomere recombination accelerates replicative senescence and may promote premature aging, PNAS 107(36), 15768–15773.

    Article  PubMed  CAS  Google Scholar 

  20. Blagoev, K. B., Goodwin, E. H., and Bailey, S. M. (2010) Telomere sister chromatid exchange and the process of aging, Aging (Albany NY) 2(10).

    Google Scholar 

  21. Dregalla, R. C., Zhou, J., Idate, R. R., Battaglia, C. L., Liber, H. L., and Bailey, S. M. (2010) Regulatory roles of tankyrase 1 at telomeres and in DNA repair: suppression of T-SCE and stabilization of DNA-PKcs, Aging (Albany NY) 2(10).

    Google Scholar 

  22. Bailey, S. M., Williams, E. S., Cornforth, M. N., and Goodwin, E. H. (2010) Chromosome Orientation Fluorescence In Situ Hybridiza­tion (CO-FISH): strand-specific FISH, in FISH: Protocols and Applications. Humana Press, Methods Mol Biol 659, 173–183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Bailey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Williams, E.S., Cornforth, M.N., Goodwin, E.H., Bailey, S.M. (2011). CO-FISH, COD-FISH, ReD-FISH, SKY-FISH. In: Songyang, Z. (eds) Telomeres and Telomerase. Methods in Molecular Biology, vol 735. Humana Press. https://doi.org/10.1007/978-1-61779-092-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-092-8_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-091-1

  • Online ISBN: 978-1-61779-092-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics