Skip to main content

Helicos Single-Molecule Sequencing of Bacterial Genomes

Part of the Methods in Molecular Biology book series (MIMB,volume 733)


With the advent of high-throughput sequencing technologies, multiple bacterial genomes can be sequenced in days. While the ultimate goal of de novo assembly of bacterial genomes is progressing, changes in the genomic sequence of closely related bacterial strains and isolates are now easily monitored by comparison of their sequences to those of a reference genome. Such studies can be applied to the fields of bacterial evolution, epidemiology, and diagnostics. We present a protocol for single-molecule sequencing of bacterial DNA whose end result is the identification of single nucleotide variants, and various size insertions and deletions relative to a reference genome. The protocol is characterized by the simplicity of sample preparation and the lack of amplification-related sequencing bias.

Key words

  • Bacterial genome
  • Single-molecule sequencing
  • Sequencing bias
  • SNV
  • PolyA tail
  • HeliScopeTM sequencer

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-61779-089-8_1
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-61779-089-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.00
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Eliminating amplification bias from genome analysis. Helicos BioSciences Corporation Tech Note, Available for download at:

  2. MacLean, D., Jones, J. D. G., and Studholme, D. J. (2009) Application of ‘next-generation’ sequencing technologies to microbial genetics. Nat Rev Microbiol 7, 287–296.

    PubMed  Google Scholar 

  3. Holt, K. E., Parkhill, J., Mazzoni, C. J., Roumagnac, P., Weill, F. -X., Goodhead, I., Rance, R., Baker, S., Maskell, D. J., Wain, J., Dolecek, C., Achtman, M., and Dougan, G. (2008) High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet 40, 987–993.

    PubMed  CrossRef  CAS  Google Scholar 

  4. Harris, S. R., Feil, E.J., Holden, M. T. G., Quail, M. A., Nickerson, E. K., Chantratita, N., Gardete, S., Tavares, A., Day, N., Lindsay, J. A., Edgeworth, J. D., de Lencastre, H., Parkhill, J., Peacock, S. J., and Bentley, S. D. (2010) Evolution of MRSA during hospital and intercontinental spread. Science 327, 469–  474.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Smith, E. E., Buckley, D. G., Wu, Z., Saenphimmachak, C., Hoffman, L. R., D’Argenio, D. A., Miller, S. I., Ramsey, B. W., Speert, D. P., Moskowitz, S. M., Burns, J. L., Kaul, R. and Olson, M. V. (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 103, 8487–  8492.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Mwangi, M. M., Wu, S. W., Zhou, Y., Sieradzki, K. de Lencastre, H., Richardson, P., Bruce, D., Rubin, E., Myers, E., Siggia, E. D., and Tomasz, A. (2007) Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci USA 104, 9451–  9456.

    PubMed  CrossRef  CAS  Google Scholar 

  7. La Scola, B., Elkarkouri, K., Li, W., Wahab, T., Fournous, G., Rolain, J. -M., Biswas, S., Drancourt, M., Robert, C., Audic, S., Lofdahl, S., and Raoult, D. (2010) Rapid comparative genomic analysis for clinical microbiology: the Francisella tularensis paradigm. Genome Res 18, 742–750.

    CrossRef  Google Scholar 

  8. Srivatsan, A., Han, Y., Peng, J., Tehranchi, A. K., Gibbs, R. Wang, J. D. and Chen, R. (2008) High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genet 4, e1000139.

    PubMed  CrossRef  Google Scholar 

  9. Dohm, J. C., Lottaz, C., Borodina, T. and Himmelbauer, H. (2008) Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res 36, e105.

    PubMed  CrossRef  Google Scholar 

  10. Hillier, L. W., Marth, G. T., Quinlan, A. R., Dooling, D., Fewell, G., Barnett, D., Fox, P., Glasscock, J. I., Hickenbotham, M., Huang, W., Magrini, V. J., Richt, R. J., Sander, S. N., Stewart, D. A., Stromberg, M., Tsung, E. F., Wylie, T., Schedl, T., Wilson, R. K., and Mardis, E. R. (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat Methods 5, 183–188.

    Google Scholar 

  11. Harismendy, O., Ng, P. C., Strausberg, R., L., Wang, X., Stockwell, T. B., Beeson, K. Y., Schork, N. J., Murray, S. S., Topol, E. J., Levy, S. and Frazer, K. A. (2009) Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol 10, R32.

    Google Scholar 

Download references


The authors would like to acknowledge the valuable contributions of Katica Ilic, Kristen Kerouac, and Eldar Giladi.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kathleen E. Steinmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Steinmann, K.E., Hart, C.E., Thompson, J.F., Milos, P.M. (2011). Helicos Single-Molecule Sequencing of Bacterial Genomes. In: Kwon, Y., Ricke, S. (eds) High-Throughput Next Generation Sequencing. Methods in Molecular Biology, vol 733. Humana Press, Totowa, NJ.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-088-1

  • Online ISBN: 978-1-61779-089-8

  • eBook Packages: Springer Protocols