Neurotransmitter Transporters and Anticonvulsant Drug Development

  • Arne Schousboe
  • Karsten K. Madsen
  • H. Steve White
Part of the Neuromethods book series (NM, volume 56)


Excitatory and inhibitory neurotransmission mediated by glutamate and GABA, respectively, plays a major role in generation of seizures. So far, emphasis has been placed on the GABA system in attempts to develop antiepileptic drugs. Tiagabine, a selective inhibitor of GABA transporter 1 (GAT1), is marketed for treatment of certain seizure types and serves as a proof of principle that inhibitors of GABA transport may be interesting in this context. The chapter describes the methodology available to investigate in detail the pharmacology of GABA transporters and design of studies leading to identification of drug candidates. Emphasis is placed on a possible role of extrasynaptic GABA transporters in seizure control.

Key words

GABA Transporters Glutamate Neurons Astrocytes Epilepsy 



The expert secretarial assistance of Ms Hanne Danø is cordially acknowledged. The experimental work forming the basis of this review has been supported by grants from the Lundbeck Foundation ( 21/05 & R19-A2199).


  1. 1.
    McGeer PL, Eccles JC, McGeer EG (1987) Molecular neurobiology of the mammalian, 2nd edn. Plenum, New York, pp 109–150Google Scholar
  2. 2.
    Schousboe A (1990) Neurochemical alterations associated with epilepsy or seizure ­activity. In: Dam M, Gram L (eds) Comprehensive epileptology. Raven, New York, pp 1–16Google Scholar
  3. 3.
    Gether U, Andersen PH, Larsson OM, Schousboe A (2006) Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol Sci 27:375–383PubMedCrossRefGoogle Scholar
  4. 4.
    Gegelashvili G, Schousboe A (1997) High-affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52:6–15PubMedGoogle Scholar
  5. 5.
    Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11PubMedCrossRefGoogle Scholar
  6. 6.
    Gegelashvili G, Schousboe A (1998) Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res Bull 45:233–238PubMedCrossRefGoogle Scholar
  7. 7.
    Danbolt NC (2001) Glutamate uptake. Progr Neurobiol 65:1–105CrossRefGoogle Scholar
  8. 8.
    Schousboe A (2003) Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem Res 28:347–352PubMedCrossRefGoogle Scholar
  9. 9.
    Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374PubMedCrossRefGoogle Scholar
  10. 10.
    Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13:171–182PubMedCrossRefGoogle Scholar
  11. 11.
    Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84PubMedCrossRefGoogle Scholar
  12. 12.
    Schousboe A, Waagepetersen HS (2005) Role of astrocytes in glutamate homeostasis: implications for excitotoxicity. Neurotox Res 8:221–225PubMedCrossRefGoogle Scholar
  13. 13.
    Borden LA (1996) GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 29:335–356PubMedCrossRefGoogle Scholar
  14. 14.
    Conti F, Melone M, De Biasi S, Minelli A, Brecha NC, Ducati A (1998) Neuronal and glial localization of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in human cerebral cortex: with a note on its distribution in monkey cortex. J Comp Neurol 396:51–63PubMedCrossRefGoogle Scholar
  15. 15.
    Rasola A, Galietta LJ, Barone V, Romeo G, Bagnasco S (1995) Molecular cloning and functional characterization of a GABA/betaine transporter from human kidney. FEBS Lett 373:229–233PubMedCrossRefGoogle Scholar
  16. 16.
    Borden LA, Smith KE, Gustasfson EL, Branchek TA, Weinshank RL (1995) Cloning and expression of a betaine/GABA transporter from human brain. J Neurochem 64:977–984PubMedCrossRefGoogle Scholar
  17. 17.
    Zhu XM, Ong WY (2004) A light and electron microscopic study of betaine/GABA transporter distribution in the monkey cerebral neocortex and hippocampus. J Neurocytol 33:233–240PubMedCrossRefGoogle Scholar
  18. 18.
    Zhu XM, Ong WY (2004) Changes in GABA transporters in the rat hippocampus after kainate-induced neuronal injury: decrease in GAT-1 and GAT-3 but upregulation of betaine/GABA transporter BGT-1. J Neurosci Res 77:402–409PubMedCrossRefGoogle Scholar
  19. 19.
    Liu QR, Lopez-Corcuera B, Mandiyan S, Nelson H, Nelson N (1993) Molecular characterization of four pharmacologically distinct γ-aminobutyric acid transporters in mouse brain. J Biol Chem 268:2106–2112PubMedGoogle Scholar
  20. 20.
    Conti F, Zuccarello LV, Barbaresi P, Minelli A, Brecha NC, Melone M (1999) Neuronal, glial, and epithelial localization of gamma-aminobutyric acid transporter 2, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in the cerebral cortex and neighboring structures. J Comp Neurol 409:482–494PubMedCrossRefGoogle Scholar
  21. 21.
    Durkin MM, Smith KE, Borden LA, Weinshank RL, Branchek TA, Gustafson EL (1995) Localization of messenger RNAs encoding three GABA transporters in rat brain: an in situ hybridization study. Brain Res Molec Brain Res 33:7–21CrossRefGoogle Scholar
  22. 22.
    Minelli A, DeBiasi S, Brecha NC, Zuccarello LV, Conti F (1996) GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 16:6255–6264PubMedGoogle Scholar
  23. 23.
    Takayama C, Inoue Y (2005) Developmental expression of GABA transporter-1 and d3 during formation of the GABAergic synapses in the mouse cerebellar cortex. Brain Res Dev Brain Res 158:41–49PubMedCrossRefGoogle Scholar
  24. 24.
    Schousboe A, White HS (2009) Modulation of excitability via glutamate and GABA transporters. In: Schwartzkroin P (ed) Encyclopedia of basic epilepsy research, vol 1. Elsevier, Oxford, UK, pp 397–401CrossRefGoogle Scholar
  25. 25.
    Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355PubMedCrossRefGoogle Scholar
  26. 26.
    Jelenkovic AV, Jovanovic MD, Stanimirovic DD, Bokonjic DD, Ocic GG, Boskovic BS (2008) Beneficial effects of ceftriaxone against pentylenetetrazole-evoked convulsions. Exp Biol Med Maywood 233:1389–1394PubMedCrossRefGoogle Scholar
  27. 27.
    Madsen K, White HS, Clausen RP, Frølund B, Larsson OM, Krogsgaard-Larsen P, Schousboe A (2007) Functional and pharmacological aspects of GABA-transporters. In: Lajtha A, Reith M (eds) Handbook of neurochemistry and molecular neurobiology, 3rd edn, Neural membranes and transport. Springer, Berlin, pp 285–304CrossRefGoogle Scholar
  28. 28.
    Hertz E, Yu ACH, Hertz L, Juurlink BHJ, Schousboe A (1989) Preparation of primary cultures of mouse cortical neurons. In: Shahar A, De Vellis J, Vernadakis A, Haber B (eds) A dissection and tissue culture manual of the nervous system. R. Liss, New York, pp 183–186Google Scholar
  29. 29.
    Hertz L, Juurlink BHJ, Hertz E, Fosmark H, Schousboe A (1989) Preparation of primary cultures of mouse (rat) astrocytes. In: Shahar A, De Vellis J, Vernadakis A, Haber B (eds) A dissection and tissue culture manual of the nervous system. R. Liss, New York, pp 105–108Google Scholar
  30. 30.
    Hertz L, Juurlink BHJ, Fosmark H, Schousboe A (1982) Astrocytes in primary cultures. In: Pfeiffer SE (ed) Neuroscience approached through cell culture, vol 1. CRC, Boca Raton, pp 175–186Google Scholar
  31. 31.
    Hertz L, Juurlink BHJ, Szuchet S (1985) Cell cultures. In: Lajtha A (ed) Handbook of neurochemistry, vol 8. Plenum, New York, pp 603–661Google Scholar
  32. 32.
    Hertz L, Schousboe A (1987) Primary cultures of GABAergic and glutamatergic neurons as model systems to study neurotransmitter functions. I. Differentiated cells. In: Vernadakis A, Privat A, Lauder JM, Timiras PS, Giacobini E (eds) Model systems of development and aging of the nervous system. M. Nijhoff, Boston, pp 19–31Google Scholar
  33. 33.
    Booher J, Sensenbrenner M (1972) Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology 2:97–105PubMedGoogle Scholar
  34. 34.
    White HS, Sarup A, Bolvig T, Kristensen AS, Petersen G, Nelson N, Pickering DS, Larsson OM, Frølund B, Krogsgaard-Larsen P, Schousboe A (2002) Correlation between anticonvulsant activity and inhibitory action on glial GABA uptake of the highly selective mouse GAT1 inhibitor 3-hydroxy-4-amino-4, 5, 6, 7-tetrahydro-1, 2-benzisoxazole (exo-THPO) and its N-alkylated analogs. J Pharmacol Exp Therap 302:636–644CrossRefGoogle Scholar
  35. 35.
    Elliott KA, van Gelder NM (1958) Occlusion and metabolism of gamma-aminobutyric acid by brain tissue. J Neurochem 3:28–40PubMedCrossRefGoogle Scholar
  36. 36.
    Iversen LL, Neal MJ (1968) The uptake of [3H]GABA by slices of rat cerebral cortex. J Neurochem 15:1141–1149PubMedCrossRefGoogle Scholar
  37. 37.
    Iversen LL, Bloom FE (1972) Studies of the uptake of 3 H-gaba and (3 H)glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res 41:131–143PubMedCrossRefGoogle Scholar
  38. 38.
    Henn FA, Hamberger A (1971) Glial cell function: uptake of transmitter substances. Proc Natl Acad Sci USA 68:2686–2690PubMedCrossRefGoogle Scholar
  39. 39.
    Schousboe A, Hertz L, Svenneby G (1977) Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem Res 2:217–229CrossRefGoogle Scholar
  40. 40.
    Sarup A, Larsson OM, Bolvig T, Frølund B, Krogsgaard-Larsen P, Schousboe A (2003) Effects of 3-hydroxy-4-amino-4, 5, 6, 7-tetrahydro-1, 2-benzisoxazol (exo-THPO) and its N-substituted analogs on GABA transport in cultured neurons and astrocytes and by the four cloned mouse GABA transporters. Neurochem Int 43:445–451PubMedCrossRefGoogle Scholar
  41. 41.
    Sarup A, Larsson OM, Schousboe A (2003) GABA transporters and GABA-transaminase as drug targets. Curr Drug Targ CNS Neurol Dis 2:269–277CrossRefGoogle Scholar
  42. 42.
    Clausen RP, Madsen K, Larsson OM, Frølund B, Krogsgaard-Larsen P, Schousboe A (2006) Structure-activity relationship and pharmacology of γ-aminobutyric acid (GABA) transport inhibitors. Adv Pharmacol 54:265–284PubMedCrossRefGoogle Scholar
  43. 43.
    Høg S, Greenwood JR, Madsen KB, Larsson OM, Frøund B, Schousboe A, Krogsgaard-Larsen P, Clausen RP (2006) Structure-activity relationships of selective GABA uptake inhibitors. Curr Top Med Chem 6:1861–1882PubMedCrossRefGoogle Scholar
  44. 44.
    Liu QR, Mandiyan S, Nelson H, Nelson N (1992) A family of genes encoding neurotransmitter transporters. Proc Natl Acad Sci USA 89:6639–6643PubMedCrossRefGoogle Scholar
  45. 45.
    Lopéz-Corcuera B, Liu QR, Mandiyan S, Nelson H, Nelson N (1992) Expression of a mouse brain cDNA encoding novel γ-aminobutyric acid transporter. J Biol Chem 267:17491–17493PubMedGoogle Scholar
  46. 46.
    Bolvig T, Larsson OM, Pickering DS, Nelson N, Falch E, Krogsgaard-Larsen P, Schousboe A (1999) Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity. Eur J Pharmacol 375:367–374PubMedCrossRefGoogle Scholar
  47. 47.
    Clausen RP, Moltzen EK, Perregaard J, Lenz SM, Sanchez C, Falch E, Frølund B, Sarup A, Larsson OM, Schousboe A, Krogsgaard-Larsen P (2005) Selective inhibitors of GABA uptake: synthesis and molecular pharmacology of 3-hydroxy-4-N-methylamino-4, 5, 6, 7-tetrahydro-1, 2-benzo[d]isoxazole analogues. Bioorg Med Chem 13:895–908PubMedCrossRefGoogle Scholar
  48. 48.
    White HS, Watson WP, Hansen S, Slough S, Sarup A, Bolvig T, Petersen G, Larsson OM, Clausen RP, Frølund B, Krogsgaard-Larsen P, Schousboe A (2005) First demonstration of a functional role for CNS betaine/GABA transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J Pharmacol Exp Therap 312:866–874CrossRefGoogle Scholar
  49. 49.
    Borden LA, Dhar TGM, Smith KE, Branchek TA, Gluchowski C, Weinshank RL (1994) Cloning of the human homologue of the GABA transporter GAT-3 and identification of a novel inhibitor with selectivity for this site. Receptor Channels 2:207–213Google Scholar
  50. 50.
    Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3:285–290PubMedGoogle Scholar
  51. 51.
    Tallarida RJ (1992) Statistical analysis of drug combinations for synergism. Pain 49:93–97PubMedCrossRefGoogle Scholar
  52. 52.
    Tallarida RJ, Stone DJ Jr, Raffa RB (1997) Efficient designs for studying synergistic drug combinations. Life Sci 61:1–25CrossRefGoogle Scholar
  53. 53.
    Finney DJ (1971) Probit analysis. Cambridge University Press, LondonGoogle Scholar
  54. 54.
    Horton RW, Collins JF, Anlezark GM, Meldrum BS (1979) Convulsant and anticonvulsant actions in DBA/2 mice of compounds blocking the reuptake of GABA. Eur J Pharmacol 59:75–83PubMedCrossRefGoogle Scholar
  55. 55.
    Wood JD, Schousboe A, Krogsgaard-Larsen P (1980) In vivo changes in the GABA content in nerve endings (synaptosomes) induced by inhibitors of GABA uptake. Neuropharmacology 19:1149–1152PubMedCrossRefGoogle Scholar
  56. 56.
    Wood JD, Johnson DD, Krogsgaard-Larsen P, Schousboe A (1983) Anticonvulsant activity of the glial selective GABA uptake inhibitor, THPO. Neuropharmacology 22:139–142PubMedCrossRefGoogle Scholar
  57. 57.
    Krogsgaard-Larsen P, Labouta J, Meldrum B, Croucher M, Schousboe A (1981) GABA uptake inhibitors as experimental tools and potential drugs in epilepsy research. In: Morselli PL, Lloyd KG, Löscher W, Meldrum BS, Reynolds EM (eds) Neurotransmitters, seizures and epilepsy. Raven, New York, pp 23–33Google Scholar
  58. 58.
    Croucher MJ, Meldrum BS, Krogsgaard-Larsen P (1983) Anticonvulsant activity of GABA uptake inhibitors and their prodrugs following central or systemic administration. Eur J Pharmacol 89:217–228PubMedCrossRefGoogle Scholar
  59. 59.
    Schousboe A, Larsson OM, Wood JD, Krogsgaard-Larsen P (1983) Transport and metabolism of GABA in neurons and glia: implications for epilepsy. Epilepsia 24:531–538PubMedCrossRefGoogle Scholar
  60. 60.
    Yunger LM, Fowler PJ, Zarevics P, Setler PE (1984) Novel inhibitors of gamma-aminobutyric acid (GABA) uptake: anticonvulsant actions in rats and mice. J Pharmacol Exp Ther 288:109–115Google Scholar
  61. 61.
    Sutton I, Simmonds MA (1974) The selective blockade by diaminobutyric acid of neuronal uptake of [3H]GABA in rat brain in vivo. J Neurochem 23:273–274PubMedCrossRefGoogle Scholar
  62. 62.
    Dalby NO (2000) GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors. Neuropharmacology 39:2399–2407PubMedCrossRefGoogle Scholar
  63. 63.
    Mody I (2001) Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem Res 26:907–913PubMedCrossRefGoogle Scholar
  64. 64.
    Schousboe A, Larsson OM, Sarup A, White HS (2004) Role of the betaine/GABA transporter (BGT-1/GAT2) for the control of epilepsy. Eur J Pharmacol 500:281–287PubMedCrossRefGoogle Scholar
  65. 65.
    Madsen KB, Clausen RP, Larsson OM, Krogsgaard-Larsen P, Schousboe A, White HS (2009) Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. J Neurochem 109(suppl 1):139–144PubMedCrossRefGoogle Scholar
  66. 66.
    Schousboe A (1979) Effects of GABA analogues on the high-affinity uptake of GABA. In: Mandel P, De Feudis FV (eds) Astrocytes in primary cultures in GABA – Biochemistry and CNS Function. Plenum, New York, pp 219–237Google Scholar
  67. 67.
    Larsson OM, Thorbek P, Krogsgaard-Larsen P, Schousboe A (1981) Effect of homo-β-proline and other heterocyclic GABA analogues on GABA uptake in neurons and astroglial cells and on GABA receptor binding. J Neurochem 37:1509–1516PubMedCrossRefGoogle Scholar
  68. 68.
    Larsson OM, Johnston GAR, Schousboe A (1983) Differences in uptake kinetics of cis-3-aminocyclohexane carboxylic acid into neurons and astrocytes in primary cultures. Brain Res 260:279–285PubMedCrossRefGoogle Scholar
  69. 69.
    Larsson OM, Griffiths R, Allen IC, Schousboe A (1986) Mutual inhibition kinetic analysis of (γ-aminobutyric acid, taurine, taurine and β-alanine high affinity transport into neurons and astrocytes: evidence for similarity between the taurine and β-alanine carriers in both cell types. J Neurochem 47:426–432PubMedCrossRefGoogle Scholar
  70. 70.
    Larsson OM, Falch E, Krogsgaard-Larsen P, Schousboe A (1988) Kinetic characterization of inhibition of gamma-aminobutyric acid uptake into cultured neurons and astrocytes by 4, 4-diphenyl-3-butenyl derivatives of nipecotic acid and guvacine. J Neurochem 50:818–823PubMedCrossRefGoogle Scholar
  71. 71.
    Falch E, Perregaard J, Frølund B, Søkilde B, Buur A, Hansen LM, Frydenvang K, Brehm L, Bolvig T, Larsson OM, Sanchez C, White HS, Schousboe A, Krogsgaard-Larsen P (1999) Selective inhibitors of glial GABA uptake: synthesis, absolute stereochemistry, and pharmacology of the enantiomers of 3-hydroxy-4-amino-4, 5, 6, 7-tetrahydro-1, 2-benzisoxazole (exo-THPO) and analogues. J Med Chem 42:5402–5414PubMedCrossRefGoogle Scholar
  72. 72.
    Suzdak PD, Frederiksen K, Andersen KE, Sørensen PO, Knutsen LJ, Nielsen EB (1992) NNC-711, a novel potent and selective gamma-aminobutyric acid uptake inhibitor: pharmacological characterization. Eur J Pharmacol 224:189–198PubMedCrossRefGoogle Scholar
  73. 73.
    Thomsen C, Sørensen PO, Egebjerg J (1997) 1-(3-(9H-carbazol-9-yl)-1-propyl)-4-(2-methoxyphenyl)-4-piperidinol, a novel subtype selective inhibitor of the mouse type II GABA-transporter. Br J Pharmacol 120:983–985PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Arne Schousboe
    • 1
  • Karsten K. Madsen
  • H. Steve White
  1. 1.Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations