Skip to main content

In-Depth Analysis of a Plasma or Serum Proteome Using a 4D Protein Profiling Method

Part of the Methods in Molecular Biology book series (MIMB,volume 728)

Abstract

Comprehensive proteomic analysis of human plasma or serum has been a major strategy used to identify biomarkers that serve as indicators of disease. However, such in-depth proteomic analyses are challenging due to the complexity and extremely large dynamic range of protein concentrations in plasma. Therefore, reduction in sample complexity through multidimensional pre-fractionation strategies is critical, particularly for the detection of low-abundance proteins that have the potential to be the most specific disease biomarkers. We describe here a 4D protein profiling method that we developed for comprehensive proteomic analyses of both plasma and serum. Our method consists of abundant protein depletion coupled with separation strategies – microscale solution isoelectrofocusing and 1D SDS-PAGE – followed by reversed-phase separation of tryptic peptides prior to LC–MS/MS. Using this profiling strategy, we routinely identify a large number of proteins over nine orders of magnitude, including a substantial number of proteins at the low ng/mL or lower levels from approximately 300 μL of plasma sample.

Key words

  • Plasma proteome
  • Low-abundance protein
  • Immunoaffinity depletion
  • Biomarker
  • MicroSol IEF
  • SDS-PAGE
  • LC–MS/MS

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-61779-068-3_3
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-1-61779-068-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.00
Price excludes VAT (USA)
Hardcover Book
USD   179.00
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Anderson, N. L., and Anderson, N. G. (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1, 845–867.

    PubMed  CrossRef  CAS  Google Scholar 

  2. Tirumalai, R. S., Chan, K. C., Prieto, D. A., et al. (2003) Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2, 1096–1103.

    PubMed  CrossRef  CAS  Google Scholar 

  3. Rifai, N., Gillette, M. A. and Carr, S. A. (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24, 971–983.

    PubMed  CrossRef  CAS  Google Scholar 

  4. Pieper, R., Su, Q., Gatlin, C. L., et al. (2003) Multi-component immunoaffinity subtraction chromatography: an innovative step towards a comprehensive survey of the human plasma proteome, Proteomics 3, 422–432.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Tang, H. Y., Ali-Khan, N., Echan, L. A. et al. (2005) A novel four-dimensional strategy combining protein and peptide separation methods enables detection of low-abundance proteins in human plasma and serum proteomes, Proteomics 5, 3329–3342.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Liu, T., Qian, W. J., Gritsenko, M. A. et al. (2006) High dynamic range characterization of the trauma patient plasma proteome, Mol Cell Proteomics 5, 1899–1913.

    PubMed  CrossRef  CAS  Google Scholar 

  7. Washburn, M. P., Wolters, D., and Yates, J. R., 3rd. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology, Nat Biotechnol 19, 242–247.

    PubMed  CrossRef  CAS  Google Scholar 

  8. Shen, Y., Jacobs, J. M., Camp, D. G. et al. (2004) Ultra-high-efficiency strong cation exchange LC/RPLC/MS/MS for high dynamic range characterization of the human plasma proteome, Anal Chem 76, 1134–1144.

    PubMed  CrossRef  CAS  Google Scholar 

  9. Beer, L. A., Tang, H. Y., Barnhart, K. T., and Speicher, D. W. (2011) Plasma biomarker discovery using 3-D protein profiling coupled with label-free quantitation, Ed. Simpson RJ, Greening DW, Serum/Plasma Proteomics, Methods Mol Biol 728, Humana Press.

    Google Scholar 

  10. Omenn, G. S., States, D. J., Adamski, M. et al. (2005) Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database, Proteomics 5, 3226–3245.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Echan, L. A., Tang, H. Y., Ali-Khan, N., et al. (2005) Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma, Proteomics 5, 3292–3303.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Echan, L.A., and Speicher, D.W. (2009) Immunoaffinity depletion of high abundance plasma and serum proteins, in The Protein Protocols Handbook, J.M. Walker, Editor. Humana Press, New York, 139–153.

    CrossRef  Google Scholar 

  13. Righetti, P. G., Wenisch, E., Jungbauer, A., et al. (1990) Preparative purification of human monoclonal antibody isoforms in a multi-compartment electrolyser with immobiline membranes, J Chromatogr 500, 681–696.

    PubMed  CrossRef  CAS  Google Scholar 

  14. Tang, H. Y., and Speicher, D. W. (2005) Complex proteome pre-fractionation using microscale solution isoelectrofocusing, Expert Rev Proteomics 2, 295–306.

    PubMed  CrossRef  CAS  Google Scholar 

  15. Zuo, X., and Speicher, D. W. (2000) A method for global analysis of complex proteomes using sample pre-fractionation by solution isoelectrofocusing prior to two-dimensional electrophoresis, Anal Biochem 284, 266–278.

    PubMed  CrossRef  CAS  Google Scholar 

  16. Zuo, X., Echan, L., Hembach, P. et al. (2001) Towards global analysis of mammalian proteomes using sample pre-fractionation prior to narrow pH range two-dimensional gels and using one-dimensional gels for insoluble and large proteins, Electrophoresis 22, 1603–1615.

    PubMed  CrossRef  CAS  Google Scholar 

  17. Joo, W. A., and Speicher, D. (2009) Pre-fractionation using microscale solution IEF, Methods Mol Biol 519, 291–304.

    PubMed  CrossRef  CAS  Google Scholar 

  18. Schwartz, J. C., Senko, M. W., and Syka, J. E. (2002) A two-dimensional quadrupole ion trap mass spectrometer, J Am Soc Mass Spectrom 13, 659–669.

    PubMed  CrossRef  CAS  Google Scholar 

  19. Douglas, D. J., Frank, A. J., and Mao, D. (2005) Linear ion traps in mass spectrometry, Mass Spectrom Rev 24, 1–29.

    PubMed  CrossRef  CAS  Google Scholar 

  20. Hu, Q., Noll, R. J., Li, H., et al. (2005) The Orbitrap: a new mass spectrometer, J Mass Spectrom 40, 430–443.

    PubMed  CrossRef  CAS  Google Scholar 

  21. Makarov, A., Denisov, E., Kholomeev, A., et al. (2006) Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer, Anal Chem 78, 2113–2120.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Shen, Y., Zhang, R., Moore, R. J. et al. (2005) Automated 20 kpsi RPLC-MS and MS/MS with chromatographic peak capacities of 1000-1500 and capabilities in proteomics and metabolomics, Anal Chem 77, 3090–3100.

    PubMed  CrossRef  CAS  Google Scholar 

  23. Eng, J. K., McCormack, A. L., and Yates III, J. R. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database, J Am Soc Mass Spectrom 5, 976–989.

    CrossRef  CAS  Google Scholar 

  24. Tabb, D. L., McDonald, W. H., and Yates, J. R., 3rd. (2002) DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics, J Proteome Res 1, 21–26.

    PubMed  CrossRef  CAS  Google Scholar 

  25. Rai, A. J., Gelfand, C. A., Haywood, B. C. et al. (2005) HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples, Proteomics 5, 3262–3277.

    PubMed  CrossRef  CAS  Google Scholar 

  26. Olsen, J. V., de Godoy, L. M., Li, G. et al. (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap, Mol Cell Proteomics 4, 2010–2021.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institutes of Health Grants CA120393 and CA131582, and institutional grants to the Wistar Institute including an NCI Cancer Core Grant (CA10815) and the Commonwealth Universal Research Enhancement Program, Pennsylvania Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Speicher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tang, HY., Beer, L.A., Speicher, D.W. (2011). In-Depth Analysis of a Plasma or Serum Proteome Using a 4D Protein Profiling Method. In: Simpson, R., Greening, D. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 728. Humana Press. https://doi.org/10.1007/978-1-61779-068-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-068-3_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-067-6

  • Online ISBN: 978-1-61779-068-3

  • eBook Packages: Springer Protocols