Skip to main content

PET-CT in Radiotherapy for Lung Cancer

  • Protocol
  • First Online:
Positron Emission Tomography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 727))

Abstract

For NSCLC, F-18 FDG-PET scans allow more thorough staging, thus avoiding unnecessary treatments. It reduces radiation treatment volumes because of the avoidance of mediastinal lymph nodes that are PET negative and hence reduces toxicity with the same radiation dose or enables radiation dose escalation with the same toxicity. Further research is needed to assess the effect of PET on survival. PET also reduces interobserver variability for delineating tumors and opens perspective for more automated delineation parts in radiation planning. F-18 FDG-PET-CT scans can already at present be used in routine clinical practice. It is of paramount importance that the necessary calibrations have been done and that strictly standardized protocols for every step in the treatment and planning chain are implemented. For the delineation of target volumes, a combination of PET-CT images, auto-delineation tools, and last not but least manual editing of the target volumes is necessary. The latter is needed because of resolution deficiencies of PET and any other imaging modality as well as the incorporation of other that image information (e.g., know patterns of tumor spread according to pathological studies, knowledge of endoscopic findings, and other tumor and patient factors) to come to target volume definitions that have proven their clinical efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nestle, U., Kremp, S., Schaefer-Schuler, A., et al. (2005) Comparison of different methods for delineation of F-18 FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 46, 1342–8.

    PubMed  Google Scholar 

  2. Senan, S., De Ruysscher, D., Giraud, P., Mirimanoff, R., Budach, V. Radiotherapy Group of European Organization for Research and Treatment of Cancer.(2004) Literature-based recommendations for treatment planning and execution for high-precision radiotherapy in lung cancer Radiother Oncol 71, 139–46.

    Article  PubMed  Google Scholar 

  3. Nestle, U., Kremp, S., Grosu, A.L. (2006) Practical integration of [18 F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 81, 209–25.

    Article  PubMed  CAS  Google Scholar 

  4. van Der Wel, A., Nijsten, S., Hochstenbag, M., et al. (2005) Increased therapeutic ratio by 18FDG-PET-CT planning in patients with clinical CT stage N2/N3 M0 non-small cell lung cancer (NSCLC): A modelling study. Int J Radiat Oncol Biol Phys 61, 648–54.

    Google Scholar 

  5. De Ruysscher, D., Wanders, S., Minken, A., et al. (2005) Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: Results of a prospective study. Radiother Oncol 77, 5–10.

    Article  PubMed  Google Scholar 

  6. De Ruysscher, D., Wanders, S., van Haren, E., et al. (2005) Selective mediastinal node irradiation on basis of the FDG-PET scan in patients with non-small cell lung cancer: A prospective clinical study. Int J Radiat Oncol Biol Phys 62, 988–94.

    Article  PubMed  Google Scholar 

  7. Belderbos, J.S., Heemsbergen, W.D., De Jaeger, K., Baas, P., Lebesque, J.V. (2006) Final results of a Phase I/II dose escalation trial in non-small-cell lung cancer using three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 66, 126–34.

    Article  PubMed  Google Scholar 

  8. Sura, S., Greco, C., Gelblum, D., Yorke, E.D., Jackson, A., Rosenzweig, K.E. (2008) (18)F-fluorodeoxyglucose positron emission tomography-based assessment of local failure patterns in non-small-cell lung cancer treated with definitive radiotherapy. Int J Radiat Oncol Biol Phys 70, 1397–1402.

    Article  PubMed  Google Scholar 

  9. Mah, K., Caldwell, C.B., Ung, Y.C., et al. (2002) The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 52, 339–50.

    Article  PubMed  Google Scholar 

  10. Steenbakkers, R.J., Duppen, J.C., Fitton, I., et al. (2006) Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 64, 435–48.

    Article  PubMed  Google Scholar 

  11. van Baardwijk, A., Bosmans, G., Boersma, L., et al. (2007) PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 68, 771–8.

    Article  PubMed  Google Scholar 

  12. Nehmeh, S.A., Erdi, Y.E. (2008) Respiratory motion in positron emission tomography/computed tomography: a review. Semin Nucl Med 38, 167–76.

    Article  PubMed  Google Scholar 

  13. Stroom, J., Blaauwgeers, H., van Baardwijk, A., et al. (2007) Feasibility of pathology-correlated lung imaging for accurate target definition of lung tumors. Int J Radiat Oncol Biol Phys 69, 267–75.

    Article  PubMed  Google Scholar 

  14. Hicks, R.J., Kalff, V., MacManus, M.P., et al. (2001) F-18 FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non–small cell lung cancer. J Nucl Med 42, 1596–1604.

    PubMed  CAS  Google Scholar 

  15. Mac Manus, M.P., Hicks, R.J., Matthews, J.P., Wirth, A., Rischin, D., Ball, D.L. (2001) High rate of detection of unsuspected distant metastases by PET in apparent stage III non-small-cell lung cancer: implications for radical radiation therapy. Int J Radiat Oncol Biol Phys 50, 287–93.

    Article  CAS  Google Scholar 

  16. van Baardwijk, A., Bosmans, G., Boersma, L., et al. (2008) Individualized radical radiotherapy of non-small-cell lung cancer based on normal tissue dose constraints: a feasibility study. Int J Radiat Oncol Biol Phys 71, 1394–1401.

    Article  PubMed  Google Scholar 

  17. Aerts, H.J., Bosmans, G., van Baardwijk, A.A., et al. (2008) Stability of (18)F-Deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: A prospective study. Int J Radiat Oncol Biol Phys 71, 1402–7.

    Article  PubMed  CAS  Google Scholar 

  18. van Loon, J., Offermann, C., Bosmans, G., et al. (2008) 18FDG-PET based radiation planning of mediastinal lymph nodes in limited disease small cell lung cancer changes radiotherapy fields: a planning study. Radiother Oncol 87, 49–54.

    Article  PubMed  Google Scholar 

  19. Öllers, M., Bosmans, G., van Baardwijk, A., et al. (2008) The integration of PET-CT scans from different hospitals into radiotherapy treatment planning. Radiother Oncol 87, 142–6.

    Article  PubMed  Google Scholar 

  20. Grgic, A., Nestle, U., Schaefer-Schuler, A., Kremp, S., Kirsch, C.M., Hellwig, D. (2009) FDG-PET-based radiotherapy planning in lung cancer: optimum breathing protocol and patient positioning-an intraindividual comparison Int J Radiat Oncol Biol Phys 73(1), 103–11.

    Article  PubMed  Google Scholar 

  21. Gagel, B., Reinartz, P., Demirel, C., et al. (2006) [18 F] fluoromisonidazole and [18 F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study. BMC Cancer6, 51.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk De Ruysscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

De Ruysscher, D. (2011). PET-CT in Radiotherapy for Lung Cancer. In: Juweid, M., Hoekstra, O. (eds) Positron Emission Tomography. Methods in Molecular Biology, vol 727. Humana Press. https://doi.org/10.1007/978-1-61779-062-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-062-1_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-061-4

  • Online ISBN: 978-1-61779-062-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics