Advertisement

Laser Capture Microdissection of FFPE Tissue Sections Bridging the Gap Between Microscopy and Molecular Analysis

  • Renate BurgemeisterEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 724)

Abstract

Laser capture microdissection (LCM) enables researchers to combine structure identification by ­microscopy with structure investigation by modern molecular techniques.

The main question in modern biomedical research is the understanding of cellular and molecular mechanisms. The methods to investigate pathological changes on a molecular, cellular, or tissue level become more and more exact, whereas at the same time the sample amounts available become smaller and smaller.

The challenge in microscopy is the identification of structures or molecules. Today, scientists are no longer satisfied with just observing tissues and cells. They demand the ability to get access to the identified structures to bring their observations to the subcellular and genetic level. Downstream to microscopy the full toolbox of molecular biology for DNA, RNA, and protein analysis has to be applied.

Key words

Laser microdissection LCM MicroBeam Single-cell analysis Quantitative RT-PCR Image processing 

References

  1. 1.
    Von Eggeling, F., and Ernst, G. (2007) Microdissected tissue: an underestimated source for biomarker discovery? Biomark Med 1, 217–219.CrossRefGoogle Scholar
  2. 2.
    Schütze, K., Niyaz, Y., Stich, M., and Buchstaller, A. (2007) Noncontact laser microdissection and catapulting for pure sample capture. Methods Cell Biol 82, 649–673.PubMedGoogle Scholar
  3. 3.
    George, M.D., Wehkamp, J., Kays, R.J., Leutenegger, C.M, Sabir, S., Grishina, I., et al. (2008) In vivo gene expression profilin of human intestinal epithelial cells: analysis by laser microdissection of formalin fixed tissues. BMC Genomics 9, 209–213.PubMedCrossRefGoogle Scholar
  4. 4.
    Burgemeister, R. (2005) New aspects of laser microdissection in research and routine. J Histochem Cytochem 53, 409–412.PubMedCrossRefGoogle Scholar
  5. 5.
    Hoffmann, A.-C., Danenberg, K.D., Taubert, H., Danenberg, P.V., and Wuerl, P. (2009) A three-gene signature for outcome in soft tissue sarcoma. Clin Cancer Res 15, 5191–5198.PubMedCrossRefGoogle Scholar
  6. 6.
    Vona, G., Sabile, A., Louha, M., Sitruk, V., Romana, S., Schütze, K., et al. (2000) Isolation by size of epithelial tumor cells : a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol 156, 57–63.PubMedCrossRefGoogle Scholar
  7. 7.
    Kreft, A., Springer, E., Lipka, D.B., and Kirkpatrick, Ch.J. (2009) Wild-type JAK2 secondary acute erythroleukemia developing after JAK2-V617F-mutated primary myelofibrosis. Acta Haematol 122, 36–38.PubMedCrossRefGoogle Scholar
  8. 8.
    Rödder, S., Scherer, A., Raulf, F., Bertier, C.C., Hertig, A., Couzi, L., et al. (2009) Renal allografts with IF/TA display distinct expression profiles of metzincins and related genes. Am J Transplant 9, 517–526.PubMedCrossRefGoogle Scholar
  9. 9.
    Churchill, M.J., Wesseling, S.L., Cowley, D., Pardo, C.A., McArthur, J.C., Brew, B.J., et al. (2009) Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol 66, 253–258.PubMedCrossRefGoogle Scholar
  10. 10.
    Langer, S., Geigl, B., Gangnus, R., and Speicher, M.R. (2005) Sequential application of interphase-FISH and CGH to single cells. Lab Invest 85, 582–592.PubMedCrossRefGoogle Scholar
  11. 11.
    Sotlar, K., Bache, A., Stellmacher, F., Bültmann, B., Valent, P., and Horny, H.-P. (2008) Systemic mastocytosis associated with chronic idiopathic myelofibrosis. J Mol Diagn 10, 58–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Langer, S., Geigl, J.B., Ehnle, S., Gangnus, R., and Speicher, M. (2005) Live cell catapulting and recultivation does not change the karyotype of HCT116 tumor cells. Cancer Genet Cytogenet 161, 174–177.PubMedCrossRefGoogle Scholar
  13. 13.
    Thalhammer, S., Langer, S., Speicher, M.R., Heckl, W., and Geigl, J.B. (2004) Generation of chromosome painting probes from single chromosomes by laser microdissection and linker-adaptor PCR. Chromosome Res 12, 337–343.PubMedCrossRefGoogle Scholar
  14. 14.
    Fiegler, H., Geigl, J.B., Langer, S., Rigler, D., Porter, K., Unger, K., et al. (2007) High resolution array-CGH analysis of single cells. Nucleic Acids Res 35, e15.PubMedCrossRefGoogle Scholar
  15. 15.
    Terstegge, S., Rath, B.H., Laufenberg, I., Limbach, N., Buchstaller, A., Schütze, K., et al. (2009) Laser assisted selection and passaging of human pluripotent stem cell colonies. J Biotechnol 10, 224–230.CrossRefGoogle Scholar
  16. 16.
    Chaudhary, K.W., Barrezueta, N.X., Bauchmann, M.B., Milici, A.J., Beckius, G., Stedman, D.B., et al. (2006) Embryonic stem cells in predictive cardiotoxicity: laser capture microscopy enables assay development. Toxicol Sci 90, 149–158.PubMedCrossRefGoogle Scholar
  17. 17.
    Duan, Y., Catana, A., Meng, Y., Yamamoto, N., He, S., Gupta, S., et al. (2007) Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells 25, 3058–3068.PubMedCrossRefGoogle Scholar
  18. 18.
    Vandewoestyne, M., van Hoofstat, D., van Nieuwerburgh, F., and Deforce, D. (2009) Suspension fluorescence in situ hybridization (S-FISH) combined with automatic detection and laser microdissection for STR profiling of male cells in male/female mixtures. Int J Legal Med 123, 169–175.PubMedCrossRefGoogle Scholar
  19. 19.
    Seitz, G., Warmann, S.W., Fuchs, J., Heitmann, H., Mahrt, J., Busse, A.-C., et al. (2008) Imaging of cell trafficking and metastases of paediatric rhabdomyosarcoma. Cell Prolif 41, 365–374.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Carl Zeiss MicroImagingMünchenGermany

Personalised recommendations