An Alternative Fixative to Formalin Fixation for Molecular Applications: The RCL2®-CS100 Approach

  • Amélie Denouël
  • Florence Boissière-Michot
  • Philippe Rochaix
  • Frédéric Bibeau
  • Nathalie BoulleEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 724)


Molecular analysis of tissue lesions is increasingly used in laboratories to identify new prognostic and therapeutic markers. Formalin has long been the tissue fixative of choice in the laboratories of pathology, as it preserves tissue morphology allowing accurate histological diagnosis. However, formalin is highly toxic and alters nucleic acids and protein integrity, so that new fixatives are critically needed that would allow both morphological and molecular analysis on the same tissue specimen. Recently, we found RCL2®-CS100, a noncross-linking fixative, to display interesting performances regarding tissue morphology and DNA, RNA, and protein quality. We adapted RCL2 tissue fixation protocol so it could be used on a routine and automated laboratory basis, still preserving its good performances. This protocol will be described in detail in the following review.

Key words

Tissue fixation Formalin RCL2®-CS100 Immunohistochemistry Nucleic acids DNA RNA 


  1. 1.
    Delfour, C., Roger, P., Bret, C., Berthe, M. L., Rochaix, P., Kalfa, N., et al. (2006) RCL2, a new fixative, preserves morphology and nucleic acid integrity in paraffin-embedded breast carcinoma and microdissected breast tumor cells. J. Mol. Diagn. 8, 157–169.PubMedCrossRefGoogle Scholar
  2. 2.
    Bellet, V., Boissière, F., Bibeau, F., Desmetz, C., Berthe, M. L., Rochaix, P., et al. (2008) Pro­teomic analysis of RCL2 paraffin-embedded tissues. J. Cell Mol. Med. 12, 2027–2036.CrossRefGoogle Scholar
  3. 3.
    Almeida, A., Paul Thiery J., Magdelénat, H., and Radvanyi, F. (2004) Gene expression analysis by real-time reverse transcription polymerase chain reaction: influence of tissue handling. Anal. Biochem. 328, 101–108.PubMedCrossRefGoogle Scholar
  4. 4.
    Bustin, S. A. and Nolan, T. (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J. Biomol. Tech. 15, 155–166.PubMedGoogle Scholar
  5. 5.
    Copois, V., Bibeau, F., Bascoul-Mollevi, C., Salvetat, N., Chalbos, P., Bareil, C., et al. (2007) Impact of RNA degradation on gene expression profiles: assessment of different methods to reliably determine RNA quality. J. Biotechnol. 127, 549–559.PubMedCrossRefGoogle Scholar
  6. 6.
    Fleige, S., Walf, V., Huch, S., Prgomet, C., Sehm, J., and Pfaffl, M. W. (2006) Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol. Lett. 28, 1601–1613.PubMedCrossRefGoogle Scholar
  7. 7.
    Ho-Pun-Cheung, A., Bascoul-Mollevi, C., Assenat, E., Boissiere-Michot, F., Bibeau, F., Cellier, D., et al. (2009) Reverse transcription-quantitative polymerase chain reaction: description of a RIN-based algorithm for accurate data normalization. BMC Mol. Biol. 15, 10–31.Google Scholar
  8. 8.
    Strand, C., Enell, J., Hedenfalk, I., and Ferno, M. (2007) RNA quality in frozen breast cancer samples and the influence on gene expression analysis – a comparison of three evaluation methods using microcapillary electrophoresis traces. BMC Mol. Biol. 22, 8–38.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Amélie Denouël
    • 1
  • Florence Boissière-Michot
    • 1
  • Philippe Rochaix
    • 2
  • Frédéric Bibeau
    • 1
  • Nathalie Boulle
    • 3
    Email author
  1. 1.CRLC Val d’AurelleMontpellierFrance
  2. 2.CRLC Claudius RegaudToulouseFrance
  3. 3.Hospital Arnaud de VilleneuveMontpellierFrance

Personalised recommendations