RT-PCR Gene Expression Profiling of RNA from Paraffin-Embedded Tissues Prepared Using a Range of Different Fixatives and Conditions

  • Mei-Lan LiuEmail author
  • Jennie Jeong
  • Ranjana Ambannavar
  • Carl Millward
  • Frederick Baehner
  • Chithra Sangli
  • Debjani Dutta
  • Mylan Pho
  • Anhthu Nguyen
  • Maureen T. Cronin
Part of the Methods in Molecular Biology book series (MIMB, volume 724)


Although RNA is isolated from archival fixed tissues routinely for reverse transcription polymerase chain reaction (RT-PCR) and microarray analyses to identify biomarkers of cancer prognosis and therapeutic response prediction, the sensitivity of these molecular profiling methods to variability in pathology tissue processing has not been described in depth. As increasing numbers of expression analysis studies using fixed archival tumor specimens are reported, it is important to examine how dependent these results are on tissue-processing methods.

We carried out a series of studies to systematically evaluate the effects of various tissue-fixation reagents and protocols on RNA quality and RT-PCR gene expression profiles. Human placenta was selected as a model specimen for these studies since it is relatively easily obtained and has proliferative and invasive qualities similar to solid tumors. In addition, each specimen is relatively homogeneous and large enough to provide sufficient tissue to systematically compare a range of fixation conditions and reagents, thereby avoiding the variability inherent in studying collections of tumor tissue specimens. Since anatomical pathology laboratories generally offer hundreds of different tissue-fixation protocols, we focused on fixation reagents and conditions used to process the most common solid tumors for primary cancer diagnosis. Fresh placentas donated under an IRB-approved protocol were collected at delivery and immediately submerged in cold saline for transport to a central pathology laboratory for processing. RNA was extracted from each specimen, quantified, and analyzed for size distribution and analytical performance using a panel of 24 RT-PCR gene expression assays. We found that different tissue-fixation reagents and tissue-processing conditions resulted in widely varying RNA extraction yields and extents of RNA fragmentation. However, the RNA extraction method and RT-PCR assays could be optimized to achieve successful gene expression analysis for nearly all fixation conditions represented in these studies.

Key words

Breast cancer Formalin-fixed paraffin-embedded tissue Quantitative RT-PCR Gene expression profiling Molecular biomarkers Prognosis Prediction 


  1. 1.
    Rupp, G.M. and Locker, J. (1988) Purification and analysis of RNA from paraffin-embedded tissues. Biotechniques 6, 56–60.PubMedCrossRefGoogle Scholar
  2. 2.
    Finke, J., Fritzen, R., Ternes, P., Lange, W., and Dolken, G. (1993) An improved strategy and a useful housekeeping gene for RNA analysis from formalin-fixed, paraffin-embedded tissues by PCR. Biotechniques 14, 448–453.PubMedGoogle Scholar
  3. 3.
    Mies, C. (1994) Molecular biological analysis of paraffin-embedded tissues. Hum. Pathol. 25, 555–560.PubMedCrossRefGoogle Scholar
  4. 4.
    Krafft, A.E., Duncan, B.W., Bijwaard, K.E., Taubenberger, J.K., and Lichy, J.H. (1997) Optimization of the isolation and amplification of RNA from formalin-fixed, paraffin-embedded tissue: the armed forces institute of pathology experience and literature review. Mol. Diagn. 2, 217–230.PubMedCrossRefGoogle Scholar
  5. 5.
    Stanta, G. and Bonin, S. (1998) RNA quantitative analysis from fixed and paraffin-embedded tissues: membrane hybridization and capillary electrophoresis. Biotechniques 24, 271–276.PubMedGoogle Scholar
  6. 6.
    Chang, J., Powles, T.J., Allred, D.C., Ashley, S.E., Clark, G.M., Makris, A., et al. (1999) Biologic markers as predictors of clinical outcome from systemic therapy for primary operable breast cancer. J. Clin. Oncol. 17, 3058–3063.PubMedGoogle Scholar
  7. 7.
    Sheils, O.M. and Sweeney, E.C. (1999) TSH receptor status of thyroid neoplasms-TaqMan RT-PCR analysis of archival material. J. Pathol. 188, 87–92.PubMedCrossRefGoogle Scholar
  8. 8.
    Godfrey, T.E., Kim, S.H., Chavira, M., Ruff, D.W., Warren, R.S., Gray, J.W., et al. (2000) Quantitative mRNA expression analysis from formalin-fixed, paraffin-embedded tissues using 5′ nuclease quantitative reverse ­transcription-polymerase chain reaction. J. Mol. Diagn. 2, 84–91.PubMedCrossRefGoogle Scholar
  9. 9.
    Specht, K., Richter, T., Muller, U., Walch, A., Werner, M., and Hofler, H. (2001) Quantitative gene expression analysis in microdissected archival formalin-fixed and paraffin-embedded tumor tissue. Am. J. Pathol. 158, 419–429.PubMedCrossRefGoogle Scholar
  10. 10.
    Abrahamsen, H.N., Steiniche, T., Nexo, E., Hamilton-Dutoit, S.J., and Sorensen, B.S. (2003) Towards quantitative mRNA analysis in paraffin-embedded tissues using real-time reverse transcriptase-polymerase chain reaction: a methodological study on lymph nodes from melanoma patients. J. Mol. Diagn. 5, 34–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Cronin, M., Pho, M., Dutta, D., Stephans, J.C., Shak, S., Kiefer, M.C., et al. (2004) Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am. J. Pathol. 164, 35–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Haque, T., Faury, D., Albrecht, S., Lopez-Aguilar, E., Hauser, P., Garami, M., et al. (2007) Gene expression profiling from formalin-fixed paraffin-embedded tumors of pediatric glioblastoma. Clin. Cancer Res. 13, 6284–6292.PubMedCrossRefGoogle Scholar
  13. 13.
    Linton, K.M., Hey, Y., Saunders, E., Jeziorska, M., Denton, J., Wilson, C.L., et al. (2008) Acquisition of biologically relevant gene expression data by Affymetrix microarray analysis of archival formalin-fixed paraffin-embedded tumours. Br. J. Cancer 98, 1403–1414.PubMedCrossRefGoogle Scholar
  14. 14.
    Oberli, A., Popovici, V., Delorenzi, M., Baltzer, A., Antonov, J., Matthey, S., et al. (2008) Expression profiling with RNA from formalin-fixed, paraffin-embedded material. BMC Med. Genomics 1, 1–15.CrossRefGoogle Scholar
  15. 15.
    Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537.PubMedCrossRefGoogle Scholar
  16. 16.
    Sorlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. U. S. A. 98, 10869–10874.PubMedCrossRefGoogle Scholar
  17. 17.
    van de Vijver, M.J., He, Y.D., van’t Veer, L.J., Dai, H., Hart, A.A., Voskuil, D.W., et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009.PubMedCrossRefGoogle Scholar
  18. 18.
    Ramaswamy, S., Ross, K.N., Lander, E.S., and Golub, T.R. (2003) A molecular signature of metastasis in primary solid tumors. Nat.Genet. 33, 49–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Rosenwald, A., Wright, G., Wiestner, A., Chan, W.C., Connors, J.M., Campo, E., et al. (2003) The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 3, 185–197.PubMedCrossRefGoogle Scholar
  20. 20.
    Paik, S., Shak, S., Tang, G., Kim, C., Baker, J., Cronin, M., et al. (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826.PubMedCrossRefGoogle Scholar
  21. 21.
    Gianni, L., Zambetti, M., Clark, K., Baker, J., Cronin, M., Wu, J., et al. (2005) Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J. Clin. Oncol. 23, 7265–7277.PubMedCrossRefGoogle Scholar
  22. 22.
    Cobleigh, M.A., Tabesh, B., Bitterman, P., Baker, J., Cronin, M., Liu, M.-L., et al. (2005) Tumor gene expression and prognosis in breast cancer patients with 10 or more ­positive lymph nodes. Clin. Cancer Res. 11, 8623–8631.PubMedCrossRefGoogle Scholar
  23. 23.
    Habel, L.A., Shak, S., Jacobs, M.K., Capra, A., Alexander, C., Pho, M., et al. (2006) A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res. 8, R25.PubMedCrossRefGoogle Scholar
  24. 24.
    Paik, S., Tang, G., Shak, S., Kim, C., Baker, J., Kim, W., et al. (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. 24, 3726–3734.PubMedCrossRefGoogle Scholar
  25. 25.
    Talantov, D., Baden, J., Jatkoe, T., Hahn, K., Yu, J., Rajpurohit, Y., et al. (2006) A ­quantitative reverse transcriptase-polymerase chain ­reaction assay to identify metastatic carcinoma tissue of origin. J. Mol. Diagn. 8, 320–329.PubMedCrossRefGoogle Scholar
  26. 26.
    Clark-Langone, K.M., Wu, J.Y., Sangli, C., Chen, A., Snable, J.L., Nguyen, A., et al. (2007) Biomarker discovery for colon cancer using a 761 gene RT-PCR assay. BMC Genomics 8, 279.PubMedCrossRefGoogle Scholar
  27. 27.
    Chomczynski, P. and Sacchi, N. (1987) Single step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 162, 156–159.PubMedCrossRefGoogle Scholar
  28. 28.
    Jackson, D.P., Lewis, F.A., Taylor, G.R., Boylston, A.W., and Quirke, P. (1990) Tissue extraction of DNA and RNA and analysis by the polymerase chain reaction. J. Clin. Pathol. 43, 499–504.PubMedCrossRefGoogle Scholar
  29. 29.
    Lewis, F., Maughan, N.J., Smith, V., Hillan, K., and Quirke, P. (2001) Unlocking the archive-gene expression in paraffin-embedded tissue. J. Pathol. 195, 66–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Beqaj, S.H., Flesher, R., Walker, G.R., and Smith, S.A. (2007) Use of the real-time PCR assay in conjunction with MagNA Pure for the detection of mycobacterial DNA from fixed specimens. Diagn. Mol. Pathol. 16, 169–173.PubMedCrossRefGoogle Scholar
  31. 31.
    Ribeiro-Silva, A., Zhang, H., and Jeffrey, S.S. (2007) RNA extraction from ten year old formalin-fixed paraffin-embedded breast cancer samples: a comparison of column purification and magnetic bead-based technologies. BMC Mol. Biol. 8, 118.PubMedCrossRefGoogle Scholar
  32. 32.
    Bohmann, K., Hennig, G, Rogel, U., Poremba, C., Mueller, B.M., Fritz, P., et al. (2009) RNA extraction from archival formalin-fixed paraffin-embedded tissue: a comparison of manual, semiautomated, and fully automated purification methods. Clin. Chem. 55, 1719–1727.PubMedCrossRefGoogle Scholar
  33. 33.
    Cronin, M., Sangli, C., Liu, M.L., Pho, M., Dutta, D., Nguyen, A., et al. (2007) Analytical validation of the oncotype DX genomic ­diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin. Chem. 53, 1084–1091.PubMedCrossRefGoogle Scholar
  34. 34.
    Mullins, M., Perreard, L., Quackenbush, J.F., Gauthier, N., Bayer, S., Ellis, M., et al. (2007) Agreement in breast cancer classification between microarray and quantitative reverse transcription PCR from fresh-frozen and formalin-fixed, paraffin-embedded tissues. Clin. Chem. 53, 1273–1279.PubMedCrossRefGoogle Scholar
  35. 35.
    Scicchitano, M.S., Dalmas, D.A., Bertiaux, M.A., Anderson, S.M., Turner, L.R., Thomas, R.A., et al. (2006) Preliminary comparison of quantity, quality, and microarray performance of RNA extracted from formalin-fixed, ­paraffin-embedded, and unfixed frozen tissue samples. J. Histochem. Cytochem. 54, 1229–1237.PubMedCrossRefGoogle Scholar
  36. 36.
    Coudry, R.A., Meireles, S.I., Stoyanova, R., Cooper, H.S., Carpino, A., Wang, X., et al. (2007) Successful application of microarray technology to microdissected formalin-fixed, paraffin-embedded tissue. J. Mol. Diagn. 9, 70–79.PubMedCrossRefGoogle Scholar
  37. 37.
    Macabeo-Ong, M., Ginzinger, D.G., Dekker, N., McMillan, A., Regezi, J.A., Wong, D.T.W., et al. (2001) Effect of duration of fixation on quantitative reverse transcription polymerase chain reaction analyses. Mod. Pathol. 15, 979–987.CrossRefGoogle Scholar
  38. 38.
    Cox, M.L., Schray, C.L., Luster, C.N., Stewart, Z.S., Korytko, P.J., Khan, K.N.M., et al. (2006) Assessment of fixatives, fixation, and tissue processing on morphology and RNA integrity. Exp. Mol. Pathol. 80, 183–191.PubMedCrossRefGoogle Scholar
  39. 39.
    Penland, S.K., Keku, T.O., Torrice, C., He, X., Krishnamurthy, J., Hoadley, K.A., et al. (2007) RNA expression analysis of formalin-fixed paraffin-embedded tumors. Lab. Invest. 87, 383–391.PubMedGoogle Scholar
  40. 40.
    Roberts, L., Bowers, J., Sensinger, K., Lisowski, A., Getts, R., and Anderson, M.G. (2009) Identification of methods for use of formalin-fixed, paraffin-embedded tissue samples in RNA expression profiling. Genomics 94, 341–348.PubMedCrossRefGoogle Scholar
  41. 41.
    Gloghini, A., Canal, B., Klein, U., Dal Maso, L., Perin, T., Dalla-Favera, R., et al. (2004) RT-PCR analysis of RNA extracted from Bouin-fixed and paraffin-embedded lymphoid tissues. J. Mol. Diagn. 6, 290–296.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee, J., Hever, A., Willhite, D., Zlotnik, A., and Hevezi, P. (2005) Effects of RNA degradation on gene expression analysis of human postmortem tissues. FASEB J. 19, 1356–1358.PubMedCrossRefGoogle Scholar
  43. 43.
    Lee, K.Y., Shibutani, M., Inoue, K., Kuroiwa, K., U, M., Woo, G.H., and Hirose, M. (2006) Methacarn fixation – effects of tissue processing and storage conditions on detection of mRNAs and proteins in paraffin-embedded tissues. Anal. Biochem. 351, 36–43.PubMedCrossRefGoogle Scholar
  44. 44.
    von Ahlfen, S., Missel, A., Bendrat, K., and Schlumpberger, M. (2007) Determinants of RNA quality from FFPE samples. PlosOne 12, e1261.Google Scholar
  45. 45.
    Rozen, S. and Skaletsky, H. (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 132, 365–386.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mei-Lan Liu
    • 1
    Email author
  • Jennie Jeong
    • 1
  • Ranjana Ambannavar
    • 1
  • Carl Millward
    • 1
  • Frederick Baehner
    • 1
  • Chithra Sangli
    • 1
  • Debjani Dutta
    • 1
  • Mylan Pho
    • 1
  • Anhthu Nguyen
    • 1
  • Maureen T. Cronin
    • 1
  1. 1.Genomic Health, Inc.Redwood CityUSA

Personalised recommendations