Viruses as Nanomaterials for Drug Delivery

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 726)

Abstract

Virus delivery vectors are one among the many nanomaterials that are being developed as drug delivery materials. This chapter focuses on methods utilizing plant virus nanoparticles (PVNs) synthesized from the Red clover necrotic mosaic virus (RCNMV). A successful vector must be able to effectively carry and subsequently deliver a drug cargo to a specific target. In the case of the PVNs, we describe two types of ways cargo can be loaded within these structures: encapsidation and infusion. Several targeting approaches have been used for PVNs based on bioconjugate chemistry. Herein, examples of such approaches will be given that have been used for RCNMV as well as for other PVNs in the literature. Further, we describe characterization of PVNs, in vitro cell studies that can be used to test the efficacy of a targeting vector, and potential routes for animal administration.

Key words

Bioconjugation Capsid Drug delivery Encapsidation Infusion Nanomaterial Peptides Plant virus nanoparticle Targeting 

References

  1. 1.
    Sherman, M. B., Guenther, R. H., Tama, F., Sit, T. L., Brooks, C. L., Mikhailov, A. M., et al. (2006) Removal of divalent cations induces structural transitions in Red clover necrotic mosaic virus, revealing a potential mechanism for RNA release. J. Virol. 80, 10395–10406.CrossRefGoogle Scholar
  2. 2.
    Speir, J. A., Munshi, S., Wang, G., Baker, T. S., and Johnson, J. E. (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryoelectron microscopy. Structure 3, 63–78.CrossRefGoogle Scholar
  3. 3.
    Lucas, R. W., Larson, S. B., and McPherson, A. (2002) The crystallographic structure of brome mosaic virus. J. Mol. Biol. 317, 95–108.CrossRefGoogle Scholar
  4. 4.
    Lin, T. W., Chen, Z., Usha, R., Stauffacher, C. V., Dai, J. B., Schmidt, T., et al. (1999) The refined crystal structure of cowpea mosaic virus at 2.8 angstrom resolution. Virology 265, 20–34.CrossRefGoogle Scholar
  5. 5.
    Hopper, P., Harrison, S. C., and Sauer. R. T. (1984) Structure of tomato bushy stunt virus. V. Coat protein sequence determination and its structural implications. J. Mol. Biol. 177, 701–713.CrossRefGoogle Scholar
  6. 6.
    Aniagyei, S. E., DuFort, C., Kao, C. C., and Dragnea, B. (2008) Self-assembly approaches to nanomaterial encapsulation in viral protein cages. J. Mater. Chem. 18, 3763–3774.CrossRefGoogle Scholar
  7. 7.
    Douglas, T. and Young, M. (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393, 152–155.CrossRefGoogle Scholar
  8. 8.
    Dragnea, B., Chen, C., Kwak, E. -S., Stein, B., and Kao, C. C. (2003) Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses. J. Am. Chem. Soc. 125, 6374–6375.CrossRefGoogle Scholar
  9. 9.
    Loo, L., Guenther, R. H., Lommel, S. A., and Franzen, S. (2007) Encapsidation of nanoparticles by red clover necrotic mosaic virus. J. Am. Chem. Soc. 129, 11111–11117.CrossRefGoogle Scholar
  10. 10.
    Ren, Y. P., Wong, S. M., and Lim, L.Y. (2006) In vitro-reassembled plant virus-like particles for loading of polyacids. J. Gen. Virol. 87, 2749–2754.CrossRefGoogle Scholar
  11. 11.
    Chen, C., Kwak, E. S., Stein, B., Kao, C. C., and Dragnea, B. (2005) Packaging of gold particles in viral capsids. J. Nanosci. Nanotechnol. 5, 2029–2033.CrossRefGoogle Scholar
  12. 12.
    Loo, L., Guenther, R. H., Basnayake, V. R., Lommel, S. A., and Franzen, S. (2006) Controlled encapsidation of gold nanoparticles by a viral protein shell. J. Am. Chem. Soc. 128, 4502–4503.CrossRefGoogle Scholar
  13. 13.
    Dixit, S. K., Goicochea, N. L., Daniel, M. -C., Murali, A., Bronstein, L., De, M., et al. (2006) Quantum dot encapsulation in viral capsids. Nano Lett. 6, 1993–1999.CrossRefGoogle Scholar
  14. 14.
    Shtykova, E.V., Huang, X., Gao, X., Dyke, J. C., Schmucker, A. L., Dragnea, B., et al. (2008) Hydrophilic monodisperse magnetic nanoparticles protected by an amphiphilic alternating copolymer. J. Phys. Chem. C 112, 16809–16817.CrossRefGoogle Scholar
  15. 15.
    Loo, L., Guenther, R. H., Lommel, S. A., and Franzen, S. (2008) Infusion of dye molecules into Red clover necrotic mosaic virus. Chem. Commun. (Camb) (1), 88–90.Google Scholar
  16. 16.
    Strable, E. and Finn, M. G. (2009) Chemical Modification of Viruses and Virus-Like Particles. In: Viruses and Nanotechnology (Manchester, M. and Steinmetz, N. F., eds.) pp. 1–21, Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
  17. 17.
    Hermanson, G. T. (2008) Bioconjugate Techniques. Academic Press, San Diego.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ChemistryNorth Carolina State UniversityRaleighUSA

Personalised recommendations