Skip to main content

Biomedical Nanotechnology

  • Protocol
  • First Online:
Biomedical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 726))

Abstract

This chapter summarizes the roles of nanomaterials in biomedical applications, focusing on those highlighted in this volume. A brief history of nanoscience and technology and a general introduction to the field are presented. Then, the chemical and physical properties of nanostructures that make them ideal for use in biomedical applications are highlighted. Examples of common applications, including sensing, imaging, and therapeutics, are given. Finally, the challenges associated with translating this field from the research laboratory to the clinic setting, in terms of the larger societal implications, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mirkin, C. A. (2005) The Beginning of a Small Revolution. Small 1, 14–16.

    Article  CAS  Google Scholar 

  2. Mirkin, C. A. (1999) Tweezers for the Nanotool Kit. Science 286, 2095–2096.

    Article  CAS  Google Scholar 

  3. Daniel, M.-C. and Astruc, D. (2004) Gold Nanoparticles: Assembly, Supermolecular Chemistry, Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 104, 293–346.

    Article  CAS  Google Scholar 

  4. Ratner, M. and Ratner, D. (2003) Nanotechnology: A Gentle Introduction to the Next Big Idea. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  5. Feynman, R. (1999) The Pleasure of Finding Things Out. Perseus Books, New York, NY.

    Google Scholar 

  6. Burda, C., Chen, X., Narayanan, R., and El-Sayed, M. (2005) Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 105, 1025–1102.

    Article  CAS  Google Scholar 

  7. Park, J., Joo, J., Kwon, S. G., Jang, Y., and Hyeon, T. (2007) Synthesis of Monodisperse Spherical Nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660.

    Article  CAS  Google Scholar 

  8. Smith, D., Pentzer, E., and Nguyen, S. T. (2007) Bioactive and Therapeutic ROMP Polymers. Polym. Rev. 47, 419–459.

    Article  CAS  Google Scholar 

  9. Cushing, B. L., Kolesnichenko, V. L., and O’Connor, C. J. (2004) Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chem. Rev. 104, 3893–3946.

    Article  CAS  Google Scholar 

  10. Oh, M. and Mirkin, C. A. (2005) Chemically Tailorable Colloidal Particle from Infinite Coordination Polymers. Nature 438, 651–654.

    Article  CAS  Google Scholar 

  11. Maillard, M., Giorgio, S., and Pileni, M.-P. (2002) Silver Nanodisks. Adv. Mater. 14, 1084–1086.

    Article  CAS  Google Scholar 

  12. Hao, E., Kelly, K. L., Hupp, J. T., and Schatz, G. C. (2002) Synthesis of Silver Nanodisks Using Polystyrene Mesospheres as Templates. J. Am. Chem. Soc. 124, 15182–15183.

    Article  CAS  Google Scholar 

  13. Chen, S. and Carroll, D. L. (2002) Synthesis and Characterization of Truncated Triangular Silver Nanoplates. Nano Lett. 2, 1003–1007.

    Article  CAS  Google Scholar 

  14. Hulteen, J. C. and Van Duyne, R. P. (1995) Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces. J. Vac. Sci. Technol. A 13, 1553–1558.

    Article  Google Scholar 

  15. Millstone, J. E., Hurst, S. J., Metraux, G. S., Cutler, J. I., and Mirkin, C. A. (2009) Colloidal Gold and Silver Nanoprisms. Small 5, 646–664.

    Article  CAS  Google Scholar 

  16. Ahmadi, T. S., Wang, Z. L., Green, T. C., Henglein, A., and El-Sayed, M. (1996) Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles. Science 272, 1924–1926.

    Article  CAS  Google Scholar 

  17. Sun, Y. and Xia, Y. (2002) Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 298, 2176–2179.

    Article  CAS  Google Scholar 

  18. Yu, D. and Yam, V. W.-W. (2004) Controlled Synthesis of Monodisperse Silver Nanocubes in Water. J. Am. Chem. Soc. 126, 13200–13201.

    Article  CAS  Google Scholar 

  19. Hu, J., Odom, T. W., and Lieber, C. M. (1999) Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes. Acc. Chem. Res. 32, 435–445.

    Article  CAS  Google Scholar 

  20. Hurst, S. J., Payne, E. K., Qin, L., and Mirkin, C. A. (2006) Multisegmented One-Dimensional Nanorods. Angew. Chem. Int. Ed. 45, 2672–2692.

    Article  CAS  Google Scholar 

  21. Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., et al. (2000) Shape Control of CdSe Nanocrystals. Nature 404, 59–61.

    Article  CAS  Google Scholar 

  22. Jana, N. R., Gearheart, L., and Murphy, C. J. (2001) Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. J. Phys. Chem. B 105, 4065–4067.

    Article  CAS  Google Scholar 

  23. Kim, F., Song, J. H., and Yang, P. (2002) Photochemical Synthesis of Gold Nanorods. J. Am. Chem. Soc. 124, 14316–14317.

    Article  CAS  Google Scholar 

  24. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C., and Alivisatos, A. P. (2003) Controlled Growth of Tetrapod-Branched Inorganic Nanocrystals. Nat. Mater. 2, 382–385.

    Article  CAS  Google Scholar 

  25. Chen, S., Wang, Z. L., Ballato, J., Foulger, S. H., and Carroll, D. L. (2003) Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals. J. Am. Chem. Soc. 125, 16186–16187.

    Article  CAS  Google Scholar 

  26. Hao, E., Bailey, R. C., Schatz, G. C., Hupp, J. T., and Li, S. (2004) Synthesis and Optical Properties of “Branched” Gold Nanocrystals. Nano Lett. 4, 327–330.

    Article  CAS  Google Scholar 

  27. Zhou, W., Bai, X., Wang, E., and Xie, S. (2009) Synthesis, Structure, and Properties of Single-Walled Carbon Nanotubes. Adv. Mater. 21, 4565–4583.

    Article  CAS  Google Scholar 

  28. Dai, H. J. (2002) Carbon Nanotubes: Synthesis, Integration and Properties. Acc. Chem. Res. 35, 1035–1044.

    Article  CAS  Google Scholar 

  29. Lu, X., Wang, C., and Wei, Y. (2009) One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications. Small 5, 2349–2370.

    Article  CAS  Google Scholar 

  30. Gates, B. D., Xu, Q., Stewart, M., Ryan, D., Willson, C. G., and Whitesides, G. M. (2005) New Approaches to Nanofabrication: Molding, Printing, and Other Techniques. Chem. Rev. 105, 1171–1196.

    Article  CAS  Google Scholar 

  31. Ginger, D. S., Zhang, H., and Mirkin, C. A. (2004) The Evolution of Dip-Pen Nano­lithography. Angew. Chem. Int. Ed. 43, 30–45.

    Article  Google Scholar 

  32. Euliss, L. E., DuPont, J. A., Gratton, S., and DeSimone, J. (2006) Imparting Size, Shape, and Composition Control of Materials for Nanomedicine. Chem. Soc. Rev. 35, 1095–1104.

    Article  CAS  Google Scholar 

  33. Hayes, C. L. and Van Duyne, R. P. (2001) Nanosphere Lithography: A Versitile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J. Phys. Chem. B 105, 5599–5611.

    Article  Google Scholar 

  34. Tang, Z., Wang, Y., Podsiadlo, P., and Kotov, N. A. (2006) Biomedical Applications of Layer-by-Layer Assembly: From Biomimetics to Tissue Engineering. Adv. Mater. 18, 3203–3224.

    Article  CAS  Google Scholar 

  35. Wei, G. and Ma, P. X. (2009) Nanostructured Biomaterials for Regeneration. Adv. Funct. Mater. 18, 3568–3582.

    Article  Google Scholar 

  36. Yoo, P. J., Nam, K. T., Qi, J. F., Lee. S.-K., Park, J., Belcher, A. M., et al. (2006) Spontaneous Assembly of Viruses on Multilayered Polymer Surfaces. Nat. Mater. 5, 234–240.

    Article  CAS  Google Scholar 

  37. Craighead, H. G. (2000) Nanoelectromechanical Systems. Science 290, 1532–1535.

    Article  CAS  Google Scholar 

  38. Li, M., Tang, H. X., and Roukes, M. L. (2007) Ultra-Sensitive NEMS-Based Cantilevers for Sensing Scanned Probe and Very High-Frequency Applications. Nat. Nanotechnol. 2, 114–120.

    Article  CAS  Google Scholar 

  39. Sparreboom, W., van den Berg, A., and Eijkel, J. C. T. (2009) Principles and Applications of Nanofluidic Transport. Nat. Nanotechnol. 4, 713–720.

    Article  CAS  Google Scholar 

  40. Lu, W. and Lieber, C. M. (2007) Nanoelectronics from the Bottom Up. Nature 6, 841–850.

    Article  CAS  Google Scholar 

  41. Bonnemann, H. and Richards, R. M. (2001) Nanoscopic Metal Particles – Synthetic Methods and Potential Applications. Eur. J. Inorg. Chem. 2001, 2455–2480.

    Article  Google Scholar 

  42. Bell, A. T. (2003) The Impact of Nanoscience on Heterogeneous Catalysis. Science 299, 1688–1691.

    Article  CAS  Google Scholar 

  43. Zhong, C.-J., Luo, J., Fang, B., Wanjala, B. N., Njoki, P. N., Rameshwori, L., et al. (2010) Nanostructured Catalysts in Fuel Cells. Nanotechnology 21, 062001.

    Article  Google Scholar 

  44. Talapin, D. V., Lee, J.-S., Kovalenko, M. V., and Shevchenko, E. V. (2010) Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev. 110, 389–458.

    Article  CAS  Google Scholar 

  45. Savage, N. and Diallo, M. S. (2005) Nanomaterials and Water Purification: Opportunities and Challenges. J. Nanopart. Res. 7, 331–342.

    Article  CAS  Google Scholar 

  46. Pradeep, T. and Anshup (2009) Nobel Metal Nanoparticles for Water Purification: A Critical Review. Thin Solid Films 517, 6441–6478.

    Article  CAS  Google Scholar 

  47. Golightly, R. S., Goering, W. E., and Natan, M. J. (2009) Surface-Enhanced Raman Spectroscopy and Homeland Security: A Perfect Match? ACS Nano 3, 2859–2869.

    Article  CAS  Google Scholar 

  48. Rosi, N. L. and Mirkin, C. A. (2005) Nanostructures in Biodiagnostics. Chem. Rev. 105, 1547–1562.

    Article  CAS  Google Scholar 

  49. Gao, J., Gu, H., and Xu, B. (2009) Multifunctional Magnetic Nanoparticles: Design, Synthesis and Biomedical Applications. Acc. Chem. Res. 42, 1097–1107.

    Article  CAS  Google Scholar 

  50. Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., and Langer, R. (2007) Nanocarriers as an Emerging Platform for Cancer Therapy. Nat. Nanotechnol. 2, 751–760.

    Article  CAS  Google Scholar 

  51. Wu, H., Zhu, H., Zhuang, J., Yang, S., Liu, C., and Cao, Y. C. (2008) Water-Soluble Nanocrystals with Dual-Interaction Ligands. Angew. Chem. Int. Ed. 47, 3730–3734.

    Article  CAS  Google Scholar 

  52. Pridgen, E. M., Langer, R., and Farokhzad, O. C. (2007) Biodegradable, Polymeric Nanoparticle Delivery Systems for Cancer Therapy. Nanomedicine 2, 669–680.

    Article  CAS  Google Scholar 

  53. Rosi, N. L., Giljohann, D. A., Thaxton, C. S., Lytton-Jean, A. K. R., Han, M. S., and Mirkin, C. A. (2006) Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 312, 1027–1030.

    Article  CAS  Google Scholar 

  54. Patel, P. C., Giljohann, D. A., Seferos, D. S., and Mirkin, C. A. (2008) Peptide Antisense Nanoparticles. Proc. Natl. Acad. Sci. U.S.A 105, 17222–17226.

    Article  CAS  Google Scholar 

  55. Silva, G. A. (2006) Neuroscience Nanotechnology: Progress, Opportunities, and Challenges. Nat. Rev. Neurosci. 7, 65–74.

    Article  CAS  Google Scholar 

  56. Katz, E. and Willner, I. (2004) Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angew. Chem. Int. Ed. 43, 6042–6108.

    Article  CAS  Google Scholar 

  57. Hermanson, G. T. (2008) Bioconjugate Techniques (2nd ed.). Academic Press, New York, NY.

    Google Scholar 

  58. Stoeva, S. I., Lee, J.-S., Thaxton, C. S., and Mirkin, C. A. (2006) Multiplexed DNA Detection with Biobarcoded Nanoparticle Probes. Angew. Chem. Int. Ed. 45, 3303–3306.

    Article  CAS  Google Scholar 

  59. Yacoby, I., Bar, H., and Benhar, I. (2007) Targeted Drug Carrying Bacteriophages as Antibacterial Nanomedicines. Antimicrob. Agents. Chemother. 51, 2156–2163.

    Article  CAS  Google Scholar 

  60. Cozzoli, P. D., Pellegrino, T., and Manna, L. (2006) Synthesis, Properties and Perspectives of Hybrid Nanocrystal Structures. Chem. Soc. Rev. 35, 1195–1208.

    Article  CAS  Google Scholar 

  61. Zou, H., Wu, S., and Shen, J. (2008) Polymer/Silica Nanocomposites: Preparation, Characterization, Properties and Applications. Chem. Rev. 108, 3893–3957.

    Article  CAS  Google Scholar 

  62. Josephson, L., Tung, C. H., Moore, A., et al. (1999) High-Efficiency Intracellular Magnetic Labeling with Novel Superparamagnetic-Tat Peptide Conjugates. Bioconjug. Chem. 10, 186–191.

    Article  CAS  Google Scholar 

  63. Harisinghani, M. G., Barentsz, J., Hahn, P. F., Deserno, W. M., Tabatabaei, S., Hulsbergen van de Kaa, C., et al. (2003) Noninvasive Detection of Clinically Occult Lymph-Node Metastases in Prostate Cancer. N. Engl. J. Med. 348, 2491–2499.

    Article  Google Scholar 

  64. Smith, A. M., Duan, H., Mohs, A. M., and Nie, S. (2008) Bioconjugated Quantum Dots for In Vivo Molecular and Cellular Imaging. Adv. Drug Deliv. Rev. 60, 1226–1240.

    Article  CAS  Google Scholar 

  65. Giljohann, D. A., Seferos, D. S., Patel, P. C., Millstone, J. E., Rosi, N. L., and Mirkin, C. A. (2007) Oligonucleotide Loading Determines Cellular Uptake of DNA-Modified Gold Nanoparticles. Nano Lett. 7, 3818–3821.

    Article  CAS  Google Scholar 

  66. Seferos, D. S., Prigodich, A. E., Giljohann, D. A., Patel, P. C., and Mirkin, C. A. (2009) Polyvalent DNA-Nanoparticle Conjugates Stabilize Nucleic Acids. Nano Lett. 9, 308–311.

    Article  CAS  Google Scholar 

  67. Lytton-Jean, A. K. R. and Mirkin, C. A. (2005) A Thermodynamic Investigation into the Binding Properties of DNA Functionalized Gold Nanoparticle Probes and Molecular Fluorophore Probes. J. Am. Chem. Soc. 127, 12754–12755.

    Article  CAS  Google Scholar 

  68. Massich, M. D., Giljohann, D. A., Seferos, D. S., Ludlow, L. E., Horvath, C. M., and Mirkin, C. A. (2009) Regulating Immune Response Using Polyvalent Nucleic Acid-Gold Nanoparticle Conjugates. Mol. Pharm. 6, 1934–1940.

    Article  CAS  Google Scholar 

  69. Bloomfield, V. A., Crothers, D. M., and Tinoco, Jr., I. (2000) Nucleic Acids: Structures, Properties, and Functions. University Science Books, Sausalito, CA.

    Google Scholar 

  70. Wang, S., Wang, H., Jiao, J., Chen, K.-J., Owens, G. E., Kamei, K.-I., et al. (2009) Three-Dimensional Nanostructured Substra­tes Toward Efficient Capture of Circulating Tumor Cells. Angew. Chem. Int. Ed. 48, 8970–8973.

    Article  CAS  Google Scholar 

  71. Mirkin, C. A., Letsinger, R. L., Mucic, R. C., and Storhoff, J. J. (1996) A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. Nature 382, 607–609.

    Article  CAS  Google Scholar 

  72. Storhoff, J. J., Elghanian, R., Mucic, R. C., Mirkin, C. A., and Letsinger, R. L. (1998) One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes. J. Am. Chem. Soc. 120, 1959–1964.

    Article  CAS  Google Scholar 

  73. Zhong, W. (2009) Nanomaterials in Fluorescence-Based Biosensing. Anal. Bioanal. Chem. 394, 47–59.

    Article  CAS  Google Scholar 

  74. Taton, T. A., Mirkin, C. A., and Letsinger, R. L. (2000) Scanometric DNA Array Detection with Nanoparticle Probes. Science 289, 1757–1760.

    Article  CAS  Google Scholar 

  75. Schipper, M. L., Cheng, Z., Lee, S.-W., Bentolila, L. A., Iyer, G., Rao, J., et al. (2007) Micro-PET-Based Biodistribution of Quantum Dots in Living Mice. J. Nucl. Med. 48, 1511–1518.

    Article  CAS  Google Scholar 

  76. Cao, Y. C., Jin, R., and Mirkin, C. A. (2002) Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection. Science 297, 1536–1540.

    Article  CAS  Google Scholar 

  77. Schlucker, S. (2009) SERS Microscopy: Nanoparticle Probes and Biomedical Applications. Chemphyschem 10, 1344–1354.

    Article  Google Scholar 

  78. Na, H. B., Song, I. C., and Hyeon, T. (2009) Inorganic Particles for MRI Contrast Agents. Adv. Mater. 21, 2133–2148.

    Article  CAS  Google Scholar 

  79. Cui, Y., Wei, Q. Q., Park, H. K., and Lieber, C. M. (2001) Nanowire Sensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science 293, 1289–1292.

    Article  CAS  Google Scholar 

  80. Giljohann, D. A. and Mirkin, C. A. (2009) Drivers of Biodiagnostic Development. Nature 462, 461–464.

    Article  CAS  Google Scholar 

  81. Fang, X. and Tan, W. (2010) Aptamers Generated from Cell-SELEX for Molecular Medicine: A Chemical Biology Approach. Acc. Chem. Res. 43, 48–57.

    Article  CAS  Google Scholar 

  82. Acharya, G., Shin, C. S., McDermott, M., Mishra, H., Park, H., Kwon, I.-C., et al. (2010) The Hydrogel Template Method for Fabrication of Homogeneous Nano/Microparticles. J. Control. Release 141, 314–319.

    Article  CAS  Google Scholar 

  83. Ditto, A. J., Shah, P. N., and Yun, Y. H. (2009) Non Viral Gene Delivery Using Nanoparticles. Exp. Opin. Drug Deliv. 6, 1149–1160.

    Article  CAS  Google Scholar 

  84. Koo, Y.-E., Reddy, G. R., Bhojani, M., Schneider, R., Philbert, M. A., Rehemtulla, A., et al. (2006) Brain Cancer Diagnosis and Therapy with Nanoplatforms. Adv. Drug Deliv. Rev. 58, 1556–1577.

    Article  CAS  Google Scholar 

  85. Jain, P. K., Huang, X., El-Sayed, I. H., and El-Sayed, M. A. (2008) Nobel Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology and Medicine. Acc. Chem. Res. 41, 1578–1586.

    Article  CAS  Google Scholar 

  86. Rozhkova, E. A., Ulasov, I., Lai, B., Dimitrijevic, N. M., Lesniak, M. S., and Rajh, T. (2009) A High-Performance Nanobio Photocatalyst for Targeted Brain Cancer Therapy. Nano Lett. 9, 3337–3342.

    Article  CAS  Google Scholar 

  87. Dimitrijevic, N. M., Rozhkova, E., and Rajh, T. (2009) Dynamics of Localized Charges in Dopamine-Modified TiO and their Effect on the Formation of Reactive Oxygen Species. J. Am. Chem. Soc. 131, 2893–2899.

    Article  CAS  Google Scholar 

  88. Hartgerink, J. D., Beniash, E., and Stupp, S. I. (2001) Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers. Science 294, 1684–1688.

    Article  CAS  Google Scholar 

  89. Zhang, L. and Webster, T. J. (2009) Nanotechnology and Nanomaterials: Promises for Improved Tissue Regeneration. Nano Today 4, 66–80.

    Article  CAS  Google Scholar 

  90. Cheon, J. and Lee, J.-H. (2008) Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology. Acc. Chem. Res. 41, 1630–1640.

    Article  CAS  Google Scholar 

  91. Dhar, S., Daniel, W. L., Giljohann, D. A., Mirkin, C. A., and Lippard, S. J. (2009) Polyvalent Oligonucleotide Gold Nanoparticle Conjugates as Delivery Vehicles for Platinum (IV) Warheads. J. Am. Chem. Soc. 131, 14652–14653.

    Article  CAS  Google Scholar 

  92. Zhang, P., Steelant, W., Kumar, M., and Scholfield, M. (2007) Versatile Photosensitizers for Photodynamics Therapy at Infrared Excitation. J. Am. Chem. Soc. 129, 4526-4527.

    Article  CAS  Google Scholar 

  93. Lewinski, N., Colvin, V., and Drezek, R. (2008) Cytotoxicity of Nanoparticles. Small 4, 26–49.

    Article  CAS  Google Scholar 

  94. Maurer-Jones, M. A., Bantz, K. C., Love, S. A., Marquis, B. J., and Haynes, C. L. (2009) Toxicity of Therapeutic Nanoparticles. Nanomedicine 4, 219–241.

    Article  CAS  Google Scholar 

  95. http://www.clinicaltrials.gov (2010).

  96. http://www.nano.gov (2010).

Download references

Acknowledgements

S.J.H. would like to thank Dr. H. Christopher Fry for his careful editing of this chapter and Dr. Tijana Rajh for being an outstanding mentor and advisor. S.J.H also acknowledges Argonne National Laboratory for a Director’s Postdoctoral Fellowship. Work at the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Hurst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hurst, S.J. (2011). Biomedical Nanotechnology. In: Hurst, S. (eds) Biomedical Nanotechnology. Methods in Molecular Biology, vol 726. Humana Press. https://doi.org/10.1007/978-1-61779-052-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-052-2_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-051-5

  • Online ISBN: 978-1-61779-052-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics