Skip to main content

Chromatin Immunoprecipitation in Fission Yeast

  • Protocol
  • First Online:
Argonaute Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 725))

  • 2062 Accesses

Abstract

A tremendous amount of information regarding the nature and regulation of heterochromatin has emerged in the past 10 years. This rapid progress is largely due to the development of techniques such as chromatin immunoprecipitation or “ChIP,” which allow analysis of chromatin structure. Further technological advances such as microarray analysis and, more recently, deep sequencing technologies, have made ChIP an even more powerful tool. ChIP allows the investigator to identify protein interactions and/or the presence of various chromatin modifications at specific genomic loci.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heitz, E. (1928) Das heterochromatin der Moose. Jahrbuecher Wiss Botanik, 69, 762–818.

    Google Scholar 

  2. Lippman, Z. and Martienssen, R. (2004) The role of RNA interference in heterochromatic silencing. Nature, 431, 364–370.

    Article  PubMed  CAS  Google Scholar 

  3. Reik, W. and Walter, J. (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet, 2, 21–32.

    Article  PubMed  CAS  Google Scholar 

  4. Wolffe, A.P. and Matzke, M.A. (1999) Epigenetics: regulation through repression. Science, 286, 481–486.

    Article  PubMed  CAS  Google Scholar 

  5. Hake, S.B., Xiao, A. and Allis, C.D. (2007) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer, 96 Suppl, R31–39.

    Google Scholar 

  6. Strahl, B.D. and Allis, C.D. (2000) The language of covalent histone modifications. Nature, 403, 41–45.

    Article  PubMed  CAS  Google Scholar 

  7. Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C. and Kouzarides, T. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 410, 120–124.

    Article  PubMed  CAS  Google Scholar 

  8. Lachner, M., O’Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 410, 116–120.

    Article  PubMed  CAS  Google Scholar 

  9. Volpe, T.A., Kidner, C., Hall, I.M., Teng, G., Grewal, S.I. and Martienssen, R.A. (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 297, 1833–1837.

    Article  PubMed  CAS  Google Scholar 

  10. Verdel, A., Jia, S., Gerber, S., Sugiyama, T., Gygi, S., Grewal, S.I. and Moazed, D. (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science, 303, 672–676.

    Article  PubMed  CAS  Google Scholar 

  11. Durand-Dubief, M. and Bastin, P. (2003) TbAGO1, an argonaute protein required for RNA interference, is involved in mitosis and chromosome segregation in Trypanosoma brucei. BMC Biol, 1, 2.

    Article  PubMed  Google Scholar 

  12. Mochizuki, K., Fine, N.A., Fujisawa, T. and Gorovsky, M.A. (2002) Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell, 110, 689–699.

    Article  PubMed  CAS  Google Scholar 

  13. Morris, K.V., Chan, S.W., Jacobsen, S.E. and Looney, D.J. (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science, 305, 1289–1292.

    Article  PubMed  CAS  Google Scholar 

  14. Pal-Bhadra, M., Leibovitch, B.A., Gandhi, S.G., Rao, M., Bhadra, U., Birchler, J.A. and Elgin, S.C. (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science, 303, 669–672.

    Article  PubMed  CAS  Google Scholar 

  15. Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T. and Henikoff, S. (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet, 39, 61–69.

    Article  PubMed  CAS  Google Scholar 

  16. Ekwall K, P.J. (1999) In W, B. (ed.), Chromosome Structural Analysis: A Practical Approach Oxford University Press.

    Google Scholar 

  17. Nakayama, J., Klar, A.J. and Grewal, S.I. (2000) A chromodomain protein, Swi6, performs imprinting functions in fission yeast during mitosis and meiosis. Cell, 101, 307–317.

    Article  PubMed  CAS  Google Scholar 

  18. Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L. et al. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem, 55, 611–622.

    Article  PubMed  CAS  Google Scholar 

  19. Haring, M., Offermann, S., Danker, T., Horst, I., Peterhansel, C. and Stam, M. (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods, 3, 11.

    Article  PubMed  Google Scholar 

  20. Mutskov, V. and Felsenfeld, G. (2004) Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J, 23, 138–149.

    Article  PubMed  CAS  Google Scholar 

  21. Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 29, e45.

    Article  PubMed  CAS  Google Scholar 

  22. Buhler, M., Verdel, A. and Moazed, D. (2006) Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell, 125, 873–886.

    Article  PubMed  CAS  Google Scholar 

  23. Irvine, D.V., Zaratiegui, M., Tolia, N.H., Goto, D.B., Chitwood, D.H., Vaughn, M.W., Joshua-Tor, L. and Martienssen, R.A. (2006) Argonaute slicing is required for heterochromatic silencing and spreading. Science, 313, 1134–1137.

    Article  PubMed  CAS  Google Scholar 

  24. Partridge, J.F., DeBeauchamp, J.L., Kosinski, A.M., Ulrich, D.L., Hadler, M.J. and Noffsinger, V.J. (2007) Functional separation of the requirements for establishment and maintenance of centromeric heterochromatin. Mol Cell, 26, 593–602.

    Article  PubMed  CAS  Google Scholar 

  25. Lawrence, R.J. and Volpe, T.A. (2009) Msc1 links dynamic Swi6/HP1 binding to cell fate determination. Proc Natl Acad Sci USA, 106, 1163–1168.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Michele McDonough for helpful comments on the manuscript. T.V. and J.D. are supported by the NIH (R01 GM074986) and the generous support of the Robert H. Lurie Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Volpe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Volpe, T.A., DeMaio, J. (2011). Chromatin Immunoprecipitation in Fission Yeast. In: Hobman, T., Duchaine, T. (eds) Argonaute Proteins. Methods in Molecular Biology, vol 725. Humana Press. https://doi.org/10.1007/978-1-61779-046-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-046-1_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-045-4

  • Online ISBN: 978-1-61779-046-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics