Data Processing and Analysis for Protein Microarrays

  • David S. DeLuca
  • Ovidiu Marina
  • Surajit Ray
  • Guang Lan Zhang
  • Catherine J. Wu
  • Vladimir Brusic
Part of the Methods in Molecular Biology book series (MIMB, volume 723)


Protein microarrays are a high-throughput technology capable of generating large quantities of proteomics data. They can be used for general research or for clinical diagnostics. Bioinformatics and statistical analysis techniques are required for interpretation and reaching biologically relevant conclusions from raw data. We describe essential algorithms for processing protein microarray data, including spot-finding on slide images, Z score, and significance analysis of microarrays (SAM) calculations, as well as the concentration dependent analysis (CDA). We also describe available tools for protein microarray analysis, and provide a template for a step-by-step approach to performing an analysis centered on the CDA method. We conclude with a discussion of fundamental and practical issues and considerations.

Key words

Protein microarray Concentration dependent analysis Z score Differential expression analysis Bioinformatics 


  1. 1.
    Hartmann M, Roeraade J, Stoll D, Templin MF, Joos TO (2009) Protein microarrays for diagnostic assays. Anal Bioanal Chem 393:1407–1416PubMedCrossRefGoogle Scholar
  2. 2.
    Wolf-Yadlin A, Sevecka M, MacBeath G (2009) Dissecting protein function and signaling using protein microarrays. Curr Opin Chem Biol 13:398–405PubMedCrossRefGoogle Scholar
  3. 3.
    Coleman MA, Beernink PT, Camarero JA, Albala JS (2007) Applications of functional protein microarrays: identifying protein-protein interactions in an array format. Methods Mol Biol 385:121–130PubMedCrossRefGoogle Scholar
  4. 4.
    Ehricht R, Adelhelm K, Monecke S, Huelseweh B (2009) Application of protein arraytubes to bacteria, toxin, and biological warfare agent detection. Methods Mol Biol 509:85–105PubMedCrossRefGoogle Scholar
  5. 5.
    Michaud GA, Salcius M, Zhou F, Papov VV, Merkel J, Murtha M, Predki P, Schweitzer B (2006) Applications of protein arrays for small molecule drug discovery and characterization. Biotechnol Genet Eng Rev 22:197–211PubMedGoogle Scholar
  6. 6.
    Kerschgens J, Egener-Kuhn T, Mermod N (2009) Protein-binding microarrays: probing disease markers at the interface of proteomics and genomics. Trends Mol Med 15:352–358PubMedCrossRefGoogle Scholar
  7. 7.
    Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128:161–167PubMedCrossRefGoogle Scholar
  8. 8.
    Lubomirski M, D’Andrea MR, Belkowski SM, Cabrera J, Dixon JM, Amaratunga D (2007) A consolidated approach to analyzing data from high-throughput protein microarrays with an application to immune response profiling in humans. J Comput Biol 14:350–359PubMedCrossRefGoogle Scholar
  9. 9.
    MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–1763PubMedGoogle Scholar
  10. 10.
    Brusic V, Marina O, Wu CJ, Reinherz EL (2007) Proteome informatics for cancer research: from molecules to clinic. Proteomics 7:976–991PubMedCrossRefGoogle Scholar
  11. 11.
    Zhu X, Gerstein M, Snyder M (2006) ProCAT: a data analysis approach for protein microarrays. Genome Biol 7:R110PubMedCrossRefGoogle Scholar
  12. 12.
    White AM, Daly DS, Varnum SM, Anderson KK, Bollinger N, Zangar RC (2006) ProMAT: protein microarray analysis tool. Bioinformatics 22:1278–1279PubMedCrossRefGoogle Scholar
  13. 13.
    Marina O, Biernacki MA, Brusic V, Wu CJ (2008) A concentration-dependent analysis method for high density protein microarrays. J Proteome Res 7:2059–2068PubMedCrossRefGoogle Scholar
  14. 14.
    Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3PubMedCrossRefGoogle Scholar
  15. 15.
    Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP (2006) GenePattern 2.0. Nat Genet 38:500–501PubMedCrossRefGoogle Scholar
  16. 16.
    Hueber W, Kidd BA, Tomooka BH, Lee BJ, Bruce B, Fries JF, Sonderstrup G, Monach P, Drijfhout JW, van Venrooij WJ, Utz PJ, Genovese MC, Robinson WH (2005) Antigen microarray profiling of autoantibodies in rheumatoid arthritis. Arthritis Rheum 52:2645–2655PubMedCrossRefGoogle Scholar
  17. 17.
    Biernacki MA, Marina O, Zhang W, Liu F, Bruns I, Cai A, Neuberg D, Canning CM, Alyea EP, Soiffer RJ, Brusic V, Ritz J, Wu CJ (2010) Antigen targets of remission-inducing immune therapy are expressed on CML progenitor cells. Cancer Res 70(3):906–915PubMedCrossRefGoogle Scholar
  18. 18.
    Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121PubMedCrossRefGoogle Scholar
  19. 19.
    D’Agostino DB, Belanger A, D’Agostino RB (1990) A suggestion for using powerful and informative tests of normality. Am Stat 44:316–321CrossRefGoogle Scholar
  20. 20.
    Anderson TW, Linfeng Y (1996) Adequacy of asymptotic theory for goodness-of-fit criteria for spectral distributions. J Time Ser Anal 17:533–552CrossRefGoogle Scholar
  21. 21.
    Shapiro SS (1990) How to test normality and other distributional assumptions, Revth edn. ASQC, Milwaukee, WIGoogle Scholar
  22. 22.
    Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611Google Scholar
  23. 23.
    Schena M (2005) Protein microarrays. Jones and Bartlett, Sudbury, MAGoogle Scholar
  24. 24.
    Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Machine Learn 46:389–422CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David S. DeLuca
    • 1
  • Ovidiu Marina
    • 2
  • Surajit Ray
    • 3
  • Guang Lan Zhang
    • 4
  • Catherine J. Wu
    • 5
  • Vladimir Brusic
    • 1
  1. 1.Cancer Vaccine Center, Department of Medical OncologyDana-Farber Cancer InstituteBostonUSA
  2. 2.Department of Radiation OncologyWilliam Beaumont HospitalRoyal OakUSA
  3. 3.Department of Mathematics and StatisticsBoston UniversityBostonUSA
  4. 4.Cancer Vaccine Center, Department of Medical OncologyDana-Farber Cancer Institute, Harvard Medical SchoolBostonUSA
  5. 5.Division of Hematologic Neoplasia, Department of Medical Oncology, Cancer Vaccine CenterDana-Farber Cancer InstituteBostonUSA

Personalised recommendations