Antiviral RNAi pp 339-353 | Cite as

Antibody-Mediated Delivery of siRNAs for Anti-HIV Therapy

  • Sang-Soo Kim
  • Sandesh Subramanya
  • Dan Peer
  • Motomu Shimaoka
  • Premlata Shankar
Part of the Methods in Molecular Biology book series (MIMB, volume 721)


RNA interference (RNAi) is a potent and specific gene silencing mechanism that utilizes small ­double-stranded RNA intermediates (small interfering RNAs or siRNAs) to target homologous mRNA sequences for degradation. The therapeutic potential of RNAi for HIV infection has been demonstrated in many studies. However, successful clinical application of RNAi is contingent on developing practical strategies to deliver siRNA to the desired target cells and tissues. Recently, there has been significant progress towards developing reagents that selectively deliver exogenous siRNA to immune cells that are targeted by HIV or involved in viral pathogenesis, such as T cells, macrophages, and dendritic cells. Here, we describe details of two antibody-based strategies for systemic delivery of siRNA either specifically to T cells via the CD7 receptor or to multiple immune cell types via LFA-1, present on all leukocytes.

Key words

RNA interference Small interfering RNA Targeted delivery Cationic peptide Liposome scFvCD7 Integrin LFA-1 (lymphocyte function-associated antigen-1) I-tsNPs (integrin-targeted stabilized nanoparticles) HIV 


  1. 1.
    Rossi, J. J., June, C. H., and Kohn, D. B. (2007) Genetic therapies against HIV, Nat Biotechnol 25, 1444–1454.PubMedCrossRefGoogle Scholar
  2. 2.
    Hammond, S. M., Caudy, A. A., and Hannon, G. J. (2001) Post-transcriptional gene silencing by double-stranded RNA, Nat Rev Genet 2, 110–119.PubMedCrossRefGoogle Scholar
  3. 3.
    Dykxhoorn, D. M., and Lieberman, J. (2006) Running interference: prospects and obstacles to using small interfering RNAs as small molecule drugs, Annu Rev Biomed Eng 8, 377–402.PubMedCrossRefGoogle Scholar
  4. 4.
    Kim, D. H., and Rossi, J. J. (2007) Strategies for silencing human disease using RNA interference, Nat Rev Genet 8, 173–184.PubMedCrossRefGoogle Scholar
  5. 5.
    Kim, S. S., Garg, H., Joshi, A., and Manjunath, N. (2009) Strategies for targeted nonviral delivery of siRNAs in vivo, Trends Mol Med 15, 491–500.PubMedCrossRefGoogle Scholar
  6. 6.
    Song, E., Zhu, P., Lee, S. K., Chowdhury, D., Kussman, S., Dykxhoorn, D. M., Feng, Y., Palliser, D., Weiner, D. B., Shankar, P., Marasco, W. A., and Lieberman, J. (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors, Nat Biotechnol 23, 709–717.PubMedCrossRefGoogle Scholar
  7. 7.
    Kumar, P., Ban, H. S., Kim, S. S., Wu, H., Pearson, T., Greiner, D. L., Laouar, A., Yao, J., Haridas, V., Habiro, K., Yang, Y. G., Jeong, J. H., Lee, K. Y., Kim, Y. H., Kim, S. W., Peipp, M., Fey, G. H., Manjunath, N., Shultz, L. D., Lee, S. K., and Shankar, P. (2008) T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice, Cell 134, 577–586.PubMedCrossRefGoogle Scholar
  8. 8.
    Peer, D., Zhu, P., Carman, C. V., Lieberman, J., and Shimaoka, M. (2007) Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1, Proc Natl Acad Sci U S A 104, 4095–4100.PubMedCrossRefGoogle Scholar
  9. 9.
    Peer, D., Park, E. J., Morishita, Y., Carman, C. V., and Shimaoka, M. (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target, Science 319, 627–630.PubMedCrossRefGoogle Scholar
  10. 10.
    Subramanya, S., Kim, S. S., Abraham, S., Yao, J., Kumar, M., Kumar, P., Haridas, V., Lee, S. K., Shultz, L. D., Greiner, D., N, M., and Shankar, P. (2010) Targeted delivery of small interfering RNA to human dendritic cells to suppress dengue virus infection and associated proinflammatory cytokine production, J Virol 84, 2490–2501.PubMedCrossRefGoogle Scholar
  11. 11.
    Kim, S. S., Peer, D., Kumar, P., Subramanya, S., Wu, H., Asthana, D., Habiro, K., Yang, Y. G., Manjunath, N., Shimaoka, M., and Shankar, P. (2010) RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice, Mol Ther 18, 370–376.PubMedCrossRefGoogle Scholar
  12. 12.
    Peipp, M., Kupers, H., Saul, D., Schlierf, B., Greil, J., Zunino, S. J., Gramatzki, M., and Fey, G. H. (2002) A recombinant CD7-specific single-chain immunotoxin is a potent inducer of apoptosis in acute leukemic T cells, Cancer Res 62, 2848–2855.PubMedGoogle Scholar
  13. 13.
    Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells, Nature 411, 494–498.PubMedCrossRefGoogle Scholar
  14. 14.
    Nakata, H., Maeda, K., Miyakawa, T., Shibayama, S., Matsuo, M., Takaoka, Y., Ito, M., Koyanagi, Y., and Mitsuya, H. (2005) Potent anti-R5 human immunodeficiency virus type 1 effects of a CCR5 antagonist, AK602/ONO4128/GW873140, in a novel human peripheral blood mononuclear cell nonobese diabetic-SCID, interleukin-2 receptor gamma-chain-knocked-out AIDS mouse model, J Virol 79, 2087–2096.PubMedCrossRefGoogle Scholar
  15. 15.
    Ishikawa, F., Yasukawa, M., Lyons, B., Yoshida, S., Miyamoto, T., Yoshimoto, G., Watanabe, T., Akashi, K., Shultz, L. D., and Harada, M. (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice, Blood 106, 1565–1573.PubMedCrossRefGoogle Scholar
  16. 16.
    Lan, P., Tonomura, N., Shimizu, A., Wang, S., and Yang, Y. G. (2006) Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation, Blood 108, 487–492.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2011

Authors and Affiliations

  • Sang-Soo Kim
  • Sandesh Subramanya
  • Dan Peer
  • Motomu Shimaoka
  • Premlata Shankar
    • 1
  1. 1.Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of MedicineTexas Tech University Health Sciences CenterEl PasoUSA

Personalised recommendations