Polyamines pp 237-267 | Cite as

Protocols for Studying Antizyme Expression and Function

  • Noriyuki Murai
  • Yasuko Murakami
  • Senya Matsufuji
Part of the Methods in Molecular Biology book series (MIMB, volume 720)


Antizyme (AZ) is a key molecule in feedback regulation of cellular polyamines. It is induced by polyamines through stimulation of ribosomal frameshifting during its translation. In mammals, AZ is diverged into three paralogs, AZ1–3. Tissue and subcellular distribution are different among the paralogs, as determined by immunochemical methods or expression of fluorescent-tagged proteins. Only AZ2 is known to be phosphorylated. AZ regulates cellular polyamine levels through multiple mechanisms. It binds to ornithine decarboxylase (ODC) to form an inactive complex and to trigger degradation of ODC by 26S proteasomes. The AZ activity to promote ODC degradation can be measured both in vitro and in cells. AZ also inhibits cellular uptake of polyamines. This chapter comprises seven subchapters describing methods for studying expression and function of AZ.

Key words

Antizyme Ornithine decarboxylase Antizyme inhibitor Translational frameshifting Antibody Immunochemistry Localization Phosphorylation Protein degradation Polyamine transport 



The authors thank Dr. Jun-ichi Suzuki for providing detailed protocols.


  1. 1.
    Hayashi S, Murakami Y, Matsufuji S (1996) Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem Sci 21:27–30PubMedGoogle Scholar
  2. 2.
    Coffino P (2001) Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2:188–194PubMedCrossRefGoogle Scholar
  3. 3.
    Ivanov IP, Atkins JF (2007) Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res 35:1842–1858PubMedCrossRefGoogle Scholar
  4. 4.
    Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins JF, Gesteland RF, Hayashi S (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51–60CrossRefGoogle Scholar
  5. 5.
    Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360:597–599PubMedCrossRefGoogle Scholar
  6. 6.
    Matsufuji S, Miyazaki Y, Kanamoto R, Kameji T, Murakami Y, Baby TG, Fujita K, Ohno T, Hayashi S (1990) Analyses of ornithine decarboxylase antizyme mRNA with a cDNA cloned from rat liver. J Biochem 108:365–371PubMedGoogle Scholar
  7. 7.
    Murai N, Shimizu A, Murakami Y, Matsufuji S (2009) Subcellular localization and phosphorylation of antizyme 2. J Cell Biochem 108:1012–1021PubMedCrossRefGoogle Scholar
  8. 8.
    Van Steeg H, Van Oostrom CT, Hodemaekers HM, Peters L, Thomas AA (1991) The translation in vitro of rat ornithine decarboxylase mRNA is blocked by its 5’ untranslated region in a polyamine-independent way. Biochem J 274:521–526PubMedGoogle Scholar
  9. 9.
    Granner D, Chase LR, Aurbach GD, Tomkins GM (1968) Tyrosine aminotransferase: enzyme induction independent of adenosine 3’, 5’-monophosphate. Science 162:1018–1020PubMedCrossRefGoogle Scholar
  10. 10.
    Howard MT, Shirts BH, Zhou J, Carlson CL, Matsufuji S, Gesteland RF, Weeks RS, Atkins JF (2001) Cell culture analysis of the regulatory frameshift event required for the expression of mammalian antizymes. Genes Cells 6:931–941PubMedCrossRefGoogle Scholar
  11. 11.
    Petros LM, Howard MT, Gesteland RF, Atkins JF (2005) Polyamine sensing during antizyme mRNA programmed frameshifting. Biochem Biophys Res Commun 338:1478–1489PubMedCrossRefGoogle Scholar
  12. 12.
    Suzuki J, Murakami Y, Samejima K, Kohda K, Ohtani M, Oka T (2009) Antizyme is necessary for conversion of pancreatic tumor cells into glucagon-producing differentiated cells. Endocr Relat Cancer 16:649–659PubMedCrossRefGoogle Scholar
  13. 13.
    Heller JS, Fong WF, Canellakis ES (1976) Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci USA 73:1858–1862PubMedCrossRefGoogle Scholar
  14. 14.
    Hayashi S, Fujita K (1983) Antizyme and antizyme inhibitor of ornithine decarboxylase (rat liver). Methods Enzymol 94:185–193PubMedCrossRefGoogle Scholar
  15. 15.
    Kitani T, Fujisawa H (1984) Purification and some properties of a protein inhibitor (antizyme) of ornithine decarboxylase from rat liver. J Biol Chem 259:10036–10040PubMedGoogle Scholar
  16. 16.
    Fujita K, Murakami Y, Hayashi S (1982) A macromolecular inhibitor of the antizyme to ornithine decarboxylase. Biochem J 204:647–652PubMedGoogle Scholar
  17. 17.
    Murakami Y, Matsufuji S, Nishiyama M, Hayashi S (1989) Properties and fluctuations in vivo of rat liver antizyme inhibitor. Biochem J 259:839–845PubMedGoogle Scholar
  18. 18.
    Murakami Y, Ichiba T, Matsufuji S, Hayashi S (1992) Cloning of antizyme inhibitor, a highly homologous protein to ornithine decarboxylase. J Biol Chem 271:3340–3342Google Scholar
  19. 19.
    Murakami Y, Tanaka K, Matsufuji S, Miyazaki Y, Hayashi S (1992) Antizyme, a protein induced by polyamines, accelerates the degradation of ornithine decarboxylase in Chinese-hamster ovary-cell extracts. Biochem J 283:661–664PubMedGoogle Scholar
  20. 20.
    Kanamoto R, Kameji T, Iwashita S, Igarashi K, Hayashi S (1993) Spermidine-induced destabilization of ornithine decarboxylase (ODC) is mediated by accumulation of antizyme in ODC-overproducing variant cells. J Biol Chem 268:9393–9399PubMedGoogle Scholar
  21. 21.
    Mamroud-Kidron E, Omer-Itsicovich M, Bercovich Z, Tobias KE, Rom E, Kahana C (1994) A unified pathway for the degradation of ornithine decarboxylase in reti­culocyte lysate requires interaction with the ­polyamine-induced protein, ornithine ­decarboxylase antizyme. Eur J Biochem 226:547–554PubMedCrossRefGoogle Scholar
  22. 22.
    Murakami Y, Matsufuji S, Tanaka K, Ichihara A, Hayashi S (1993) Involvement of the proteasome and antizyme in ornithine decarboxylase degradation by a reticulocyte lysate. Biochem J 295:305–308PubMedGoogle Scholar
  23. 23.
    Lessard M, Zhao C, Singh SM, Poulin R (1995) Hormonal and feedback regulation of putrescine and spermidine transport in human breast cancer cells. J Biol Chem 270:1685–1694PubMedCrossRefGoogle Scholar
  24. 24.
    Suzuki T, He Y, Kashiwagi K, Murakami Y, Hayashi S, Igarashi K (1994) Antizyme protects against abnormal accumulation and toxicity of polyamines in ornithine decarboxylase-overproducing cells. Proc Natl Acad Sci USA 91:8930–8934PubMedCrossRefGoogle Scholar
  25. 25.
    Mitchell JL, Judd GG, Bareyal-Leyser A, Ling SY (1994) Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem J 299:19–22PubMedGoogle Scholar
  26. 26.
    Ohnishi R, Nagami R, Hirose S, Igarashi K (1985) Methylglyoxal bis(guanylhydrazone) elimination of polyamine effects on protein synthesis. Arch Biochem Biophys 242:263–268PubMedCrossRefGoogle Scholar
  27. 27.
    Obenrader MF, Prouty WF (1977) Production of monospecific antibodies to rat liver ornithine decarboxylase and their use in turnover studies. J Biol Chem 252:2866–2872PubMedGoogle Scholar
  28. 28.
    Melanitou E, Cohn DA, Bardin CW, Jänne OA (1987) Genetic variation in androgen regulation of ornithine decarboxylase gene expression in inbred strains of mice. Mol Endocrinol 1:266–273PubMedCrossRefGoogle Scholar
  29. 29.
    Kilpeläinen P, Rybnikova E, Hietala O, Pelto-Huikko M (2000) Expression of ODC and its regulatory protein antizyme in the adult rat brain. J Neurosci Res 62:675–685PubMedCrossRefGoogle Scholar
  30. 30.
    Levillain O, Greco A, Diaz JJ, Augier R, Didier A, Kindbeiter K, Catez F, Cayre M (2003) Influence of testosterone on regulation of ODC, antizyme, and N 1-SSAT gene expression in mouse kidney. Am J Physiol Renal Physiol 285:F498–F506PubMedGoogle Scholar
  31. 31.
    Hoshino K, Momiyama E, Yoshida K, Nishimura K, Sakai S, Toida T, Kashiwagi K, Igarashi K (2005) Polyamine transport by mammalian cells and mitochondria: role of antizyme and glycosaminoglycans. J Biol Chem 280:42801–42808PubMedCrossRefGoogle Scholar
  32. 32.
    Liao CP, Lasbury ME, Wang SH, Zhang C, Durant PJ, Murakami Y, Matsufuji S, Lee CH (2009) Pneumocystis mediates overexpression of antizyme inhibitor resulting in increased polyamine levels and apoptosis in alveolar macrophages. J Biol Chem 284:8174–8184PubMedCrossRefGoogle Scholar
  33. 33.
    Mitchell JL, Choe CY, Judd GG, Daghfal DJ, Kurzeja RJ, Leyser A (1996) Overproduction of stable ornithine decarboxylase and antizyme in the difluoromethylornithine-resistant cell line DH23b. Biochem J 317:811–816PubMedGoogle Scholar
  34. 34.
    Mitchell JL, Judd GG, Leyser A, Choe C (1998) Osmotic stress induces variation in cellular levels of ornithine decarboxylase-­antizyme. Biochem J 329:453–459PubMedGoogle Scholar
  35. 35.
    Tsuji T, Usui S, Aida T, Tachikawa T, Hu GF, Sasaki A, Matsumura T, Todd R, Wong DT (2001) Induction of epithelial differentiation and DNA demethylation in hamster malignant oral keratinocyte by ornithine decarboxylase antizyme. Oncogene 20:24–33PubMedCrossRefGoogle Scholar
  36. 36.
    Newman RM, Mobascher A, Mangold U, Koike C, Diah S, Schmidt M, Finley D, Zetter BR (2004) Antizyme targets cyclin D1 for degradation. A novel mechanism for cell growth repression. J Biol Chem 279:41504–41511PubMedCrossRefGoogle Scholar
  37. 37.
    Mangold U, Hayakawa H, Coughlin M, Münger K, Zetter BR (2008) Antizyme, a mediator of ubiquitin-independent proteasomal degradation and its inhibitor localize to centrosomes and modulate centriole amplification. Oncogene 27:604–613PubMedCrossRefGoogle Scholar
  38. 38.
    Kankare K, Uusi-Oukari M, Jänne OA (1997) Structure, organization and expression of the mouse ornithine decarboxylase antizyme gene. Biochem J 324:807–813PubMedGoogle Scholar
  39. 39.
    Gritli-Linde A, Nilsson J, Bohlooly-Y M, Heby O, Linde A (2001) Nuclear translocation of antizyme and expression of ornithine decarboxylase and antizyme are developmentally regulated. Dev Dyn 220:259–275PubMedCrossRefGoogle Scholar
  40. 40.
    Schipper RG, Cuijpers VM, De Groot LH, Thio M, Verhofstad AA (2004) Intracellular localization of ornithine decarboxylase and its regulatory protein, antizyme-1. Histochem Cytochem 52:1259–1266Google Scholar
  41. 41.
    Feith DJ, Shantz LM, Pegg AE (2001) Targeted antizyme expression in the skin of transgenic mice reduces tumor promoter induction of ornithine decarboxylase and decreases sensitivity to chemical carcinogenesis. Cancer Res 61:6073–6081PubMedGoogle Scholar
  42. 42.
    Feith DJ, Origanti S, Shoop PL, Sass-Kuhn S, Shantz LM (2006) Tumor suppressor activity of ODC antizyme in MEK-driven skin tumorigenesis. Carcinogenesis 27:1090–1098PubMedCrossRefGoogle Scholar
  43. 43.
    Wang X, Feith DJ, Welsh P, Coleman CS, Lopez C, Woster PM, O’Brien TG, Pegg AE (2007) Studies of the mechanism by which increased spermidine/spermine N 1-acetyltransferase activity increases susceptibility to skin carcinogenesi. Carcinogenesis 28:2404–2411PubMedCrossRefGoogle Scholar
  44. 44.
    Tosaka Y, Tanaka H, Yano Y, Masai K, Nozaki M, Yomogida K, Otani S, Nojima H, Nishimune Y (2000) Identification and characterization of testis specific ornithine decarboxylase antizyme (OAZ-t) gene: expression in haploid germ cells and polyamine-induced frameshifting. Genes Cells 5:265–276PubMedCrossRefGoogle Scholar
  45. 45.
    Matsufuji S, Kanamoto R, Murakami Y, Hayashi S (1990) Monoclonal antibody studies on the properties and regulation of murine ornithine decarboxylase antizymes. J Biochem 107:87–91PubMedGoogle Scholar
  46. 46.
    Murakami Y, Suzuki J, Samejima K, Kikuchi K, Hascilowicz T, Murai N, Matsufuji S, Oka T (2009) The change of antizyme inhibitor expression and its possible role during mammalian cell cycle. Exp Cell Res 315:2301–2311PubMedCrossRefGoogle Scholar
  47. 47.
    Murakami Y, Suzuki J, Samejima K, Oka T (2010) Developmental alterations in expression and subcellular localization of antizyme and antizyme inhibitor and their functional importance in the murine mammary gland. Amino Acids 38:591–601PubMedCrossRefGoogle Scholar
  48. 48.
    Gandre S, Bercovich Z, Kahana C (2002) Ornithine decarboxylase-antizyme is ­rapidly degraded through a mechanism that requires functional ubiquitin-dependent proteolytic activity. Eur J Biochem 269:1316–1322PubMedCrossRefGoogle Scholar
  49. 49.
    Gandre S, Bercovich Z, Kahana C (2003) Mitochondrial localization of antizyme is determined by context-dependent alternative utilization of two AUG initiation codons. Mitochondrion 2:245–256PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Noriyuki Murai
    • 1
  • Yasuko Murakami
    • 1
  • Senya Matsufuji
    • 1
  1. 1.Department of Molecular BiologyThe Jikei University School of MedicineMinato-kuJapan

Personalised recommendations