Skip to main content

Chromophores for the Delivery of Bioactive Molecules with Two-Photon Excitation

  • Protocol
  • First Online:
Photosensitive Molecules for Controlling Biological Function

Part of the book series: Neuromethods ((NM,volume 55))

Abstract

The localized release of bioactive molecules from “caged compounds” through two-photon excitation (2PE) is an emerging technology for the study of biological processes in cell and tissue culture and whole animals. Several advantages are realized when 2PE drives the activation of the biological effector: (1) excitation is tightly localized to femtoliter-sized volumes; (2) there is less photodamage to biological tissues; and (3) deeper penetration into the sample is achieved. A barrier to widespread use and an expansion of applications for the pinpoint three-dimensional delivery of biological effectors are the small number of available caging groups and phototriggers with sufficient sensitivity to 2PE, appropriate photolysis kinetics, and necessary physiological compatibility. Chromophores based on nitrobenzyl, nitroindoline, coumarin, ortho-hydroxycinnamic acid, quinoline, and other structural motifs have been designed to regulate the action of biologically active compounds with 2PE. Design principles from structure–property relationships elucidated for two-photon absorbing materials can be applied to the design of caging groups and phototriggers for high efficiency 2PE-mediated release of bioeffectors. The conjugation size, symmetry, and the strength of donor and acceptor groups impact the overall sensitivity to 2PE, but these factors must be balanced with the need for biocompatibility and the ability to drive photochemical reactions with rapid kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goeldner M, Givens RS (eds) (2005) Dynamic studies in biology: phototriggers, photoswitches, and caged biomolecules. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  2. Mayer G, Heckel A (2006) Biologically active molecules with a “light switch.” Angew Chem Int Ed 45:4900–4921

    CAS  Google Scholar 

  3. Young DD, Deiters A (2007) Photochemical control of biological processes. Org Biomol Chem 5:999–1005

    PubMed  CAS  Google Scholar 

  4. Ellis-Davies GCR (2007) Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat Methods 4:619–628

    PubMed  CAS  Google Scholar 

  5. Lee H-M, Larson DR, Lawrence DS (2009) Illuminating the chemistry of life: design, synthesis, and applications of “caged” and related photoresponsive compounds. ACS Chem Biol 4:409–427

    PubMed  CAS  Google Scholar 

  6. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    PubMed  CAS  Google Scholar 

  7. Denk W (1994) Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. Proc Natl Acad Sci USA 91:6629–6633

    PubMed  CAS  Google Scholar 

  8. Dore TM (2005) Multiphoton phototriggers for exploring cell physiology. In: Goeldner M, Givens RS (eds) Dynamic ­studies in biology: phototriggers, photoswitches, and caged biomolecules. Wiley-VCH, Weinheim, Germany, pp 435–459

    Google Scholar 

  9. Benninger RKP, Hao M, Piston DW (2008) Multi-photon excitation imaging of dynamic processes in living cells and tissues. Rev Physiol Biochem Pharmacol 160:71–92

    PubMed  CAS  Google Scholar 

  10. Rubart M (2004) Two-photon microscopy of cells and tissue. Circ Res 95:1154–1166

    PubMed  CAS  Google Scholar 

  11. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839

    PubMed  CAS  Google Scholar 

  12. Göppert M (1929) Über die Wahrscheinlichkeit des Zusammenwirkens zweier Lichtquanten in einem Elementarakt. Natur­wissenschaften 17:932

    Google Scholar 

  13. Göppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys 9:273–294

    Google Scholar 

  14. Kaiser W, Garrett CGB (1961) Two-photon excitation in CaF2:Eu2+. Phys Rev Lett 7:229–231

    CAS  Google Scholar 

  15. Kiskin NI, Chillingworth R, McCray JA, Piston D, Ogden D (2002) The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals. Eur Biophys J 30:588–604

    PubMed  CAS  Google Scholar 

  16. Furuta T, Wang SSH, Dantzker JL, Dore TM, Bybee WJ, Callaway EM, Denk W, Tsien RY (1999) Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis. Proc Natl Acad Sci USA 96:1193–1200

    PubMed  CAS  Google Scholar 

  17. Matsuzaki M, Ellis-Davies GCR, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092

    PubMed  CAS  Google Scholar 

  18. Xu C, Guild J, Webb WW, Denk W (1995) Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation. Opt Lett 20:2372–2374

    PubMed  CAS  Google Scholar 

  19. Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B 13:481–491

    CAS  Google Scholar 

  20. Demas JN, Crosby GA (1971) Measurement of photoluminescence quantum yields. A review. J Phys Chem 75:991–1024

    Google Scholar 

  21. Makarov NS, Drobizhev M, Rebane A (2008) Two-photon absorption standards in the 550–1600 nm excitation wavelength range. Opt Express 16:4029–4047

    PubMed  CAS  Google Scholar 

  22. Brown EB, Shear JB, Adams SR, Tsien RY, Webb WW (1999) Photolysis of caged calcium in femtoliter volumes using two-photon excitation. Biophys J 76:489–499

    PubMed  CAS  Google Scholar 

  23. Aujard I, Benbrahim C, Gouget M, Ruel O, Baudin J-B, Neveu P, Jullien L (2006) o-Nitrobenzyl photolabile protecting groups with red-shifted absorption: syntheses and uncaging cross-sections for one- and two-photon excitation. Chem Eur J 12:6865–6879

    PubMed  CAS  Google Scholar 

  24. Li G, Niu L (2004) How fast does the GluR1Qflip channel open? J Biol Chem 279:3990–3997

    PubMed  CAS  Google Scholar 

  25. Kiskin NI, Ogden D (2002) Two-photon excitation and photolysis by pulsed laser illumination modelled by spatially non-uniform reactions with simultaneous diffusion. Eur Biophys J 30:571–587

    PubMed  CAS  Google Scholar 

  26. Strehmel B, Strehmel V (2007) Two-photon physical organic, and polymer chemistry: theory, techniques, chromophore design, and applications. Adv Photochem 29:111–354

    CAS  Google Scholar 

  27. Rumi M, Barlow S, Wang J, Perry JW, Marder SR (2008) Two-photon absorbing materials and two-photon-induced chemistry. Adv Polym Sci 213:1–95

    CAS  Google Scholar 

  28. Terenziani F, Katan C, Badaeva E, Tretiak S, Blanchard-Desce M (2008) Enhanced two-photon absorption of organic chromophores: theoretical and experimental assessments. Adv Mater 20:4641–4678

    CAS  Google Scholar 

  29. He GS, Tan L-S, Zheng Q, Prasad PN (2008) Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem Rev 108:1245–1330

    PubMed  CAS  Google Scholar 

  30. Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Two-photon absorption and the design of two-photon dyes. Angew Chem Int Ed 48:3244–3266

    CAS  Google Scholar 

  31. Kim HM, Cho BR (2009) Two-photon materials with large two-photon cross sections. Structure–property relationship. Chem Commun (Camb) 153–164

    Google Scholar 

  32. Albota M, Beljonne D, Bredas J-L, Ehrlich JE, Fu J-Y, Heikal AA, Hess SE, Kogej T, Levin MD, Marder SR, McCord-Maughon D, Perry JW, Rockel H, Rumi M, Subramaniam G, Webb WW, Wu X-L, Xu C (1998) Design of organic molecules with large two-photon absorption cross sections. Science 281:1653–1656

    PubMed  CAS  Google Scholar 

  33. Reinhardt BA, Brott LL, Clarson SJ, Dillard AG, Bhatt JC, Kannan R, Yuan L, He GS, Prasad PN (1998) Highly active two-photon dyes: design, synthesis, and characterization toward application. Chem Mater 10:1863–1874

    CAS  Google Scholar 

  34. Corrie JET (2005) Photoremovable protecting groups used for the caging of biomolecules: 2-nitrobenzyl and 7-nitorindoline derivatives. In: Goeldner M, Givens RS (eds) Dynamic studies in biology: phototriggers, photoswitches, and caged biomolecules. Wiley-VCH, Weinheim, Germany, pp 1–28

    Google Scholar 

  35. Corrie JET, Trentham DR (1993) Caged nucleotides and neurotransmitters. In: Morrison H (ed) Biological applications of photochemical switches. Wiley, New York, pp 243–305

    Google Scholar 

  36. Kaplan JH, Forbush B III, Hoffman JF (1978) Rapid photolytic release of adenosine 5′-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry 17:1929–1935

    PubMed  CAS  Google Scholar 

  37. Neveu P, Aujard I, Benbrahim C, Le Saux T, Allemand J-F, Vriz S, Bensimon D, Jullien L (2008) A caged retinoic acid for one- and two-photon excitation in zebrafish embryos. Angew Chem Int Ed 47:3744–3746

    CAS  Google Scholar 

  38. Yip RW, Wen YX, Gravel D, Giasson R, Sharma DK (1991) Photochemistry of the o-nitrobenzyl system in solution: identification of the biradical intermediate in the intramolecular rearrangement. J Phys Chem 95:6078–6081

    CAS  Google Scholar 

  39. Yip RW, Sharma DK, Giasson R, Gravel D (1985) Photochemistry of the o-nitrobenzyl system in solution: evidence for singlet-state intramolecular hydrogen abstraction. J Phys Chem 89:5328–5330

    CAS  Google Scholar 

  40. Givens RS, Kotala MB, Lee J-I (2005) Mechanistic overview of phototriggers and cage release. In: Goeldner M, Givens RS (eds) Dynamic studies in biology: phototriggers, photoswitches, and caged biomolecules. Wiley-VCH, Weinheim, Germany, pp 95–129

    Google Scholar 

  41. Schwörer M, Wirz J (2001) Photochemical reaction mechanisms of 2-nitrobenzyl compounds in solution I. 2-nitrotoluene: thermodynamic and kinetic parameters of the aci-nitro tautomer. Helv Chim Acta 84:1441–1458

    Google Scholar 

  42. Il’ichev YV, Wirz J (2000) Rearrangements of 2-nitrobenzyl compounds. 1. Potential energy surface of 2-nitrotoluene and its isomers explored with ab initio and density functional theory methods. J Phys Chem A 104:7856–7870

    Google Scholar 

  43. Il’ichev YV, Schwoerer MA, Wirz J (2004) Photochemical reaction mechanisms of 2-nitrobenzyl compounds: methyl ethers and caged ATP. J Am Chem Soc 126:4581–4595

    PubMed  Google Scholar 

  44. Corrie JET, Barth A, Munasinghe VRN, Trentham DR, Hutter MC (2003) Photolytic cleavage of 1-(2-nitrophenyl)ethyl ethers involves two parallel pathways and product release is rate-limited by decomposition of a common hemiacetal intermediate. J Am Chem Soc 125:8546–8554

    PubMed  CAS  Google Scholar 

  45. Walker JW, Reid GP, McCray JA, Trentham DR (1988) Photolabile 1-(2-nitrophenyl)ethyl phosphate esters of adenine nucleotide analogs. Synthesis and mechanism of photolysis. J Am Chem Soc 110:7170–7177

    CAS  Google Scholar 

  46. Barth A, Corrie JET, Gradwell MJ, Maeda Y, Maentele W, Meier T, Trentham DR (1997) Time-resolved infrared spectroscopy of intermediates and products from photolysis of 1-(2-nitrophenyl)ethyl phosphates: reaction of the 2-nitrosoacetophenone byproduct with thiols. J Am Chem Soc 119:4149–4159

    CAS  Google Scholar 

  47. Zhao Y, Zheng Q, Dakin K, Xu K, Martinez ML, Li W-H (2004) New caged coumarin fluorophores with extraordinary uncaging cross sections suitable for biological imaging applications. J Am Chem Soc 126:4653–4663

    PubMed  CAS  Google Scholar 

  48. Dakin K, W-h L (2006) Infrared-LAMP: two-photon uncaging and imaging of gap junctional communication in three dimensions. Nat Methods 3:959

    PubMed  CAS  Google Scholar 

  49. Zheng G, Guo Y-M, Li W-H (2007) Photoactivatable and water soluble FRET dyes with high uncaging cross section. J Am Chem Soc 129:10616–10617

    PubMed  CAS  Google Scholar 

  50. Guo Y-M, Chen S, Shetty P, Zheng G, Lin R, W-h L (2008) Imaging dynamic cell–cell junctional coupling in vivo using Trojan-LAMP. Nat Methods 5:835–841

    PubMed  CAS  Google Scholar 

  51. Specht A, Thomann J-S, Alarcon K, Wittayanan W, Ogden D, Furuta T, Kurakawa Y, Goeldner M (2006) New photoremovable protecting groups for carboxylic acids with high photolytic efficiencies at near-UV ­irradiation. Application to the photocontrolled release of l-glutamate. Chembiochem 7:1690–1695

    PubMed  CAS  Google Scholar 

  52. Orange C, Specht A, Puliti D, Sakr E, Furuta T, Winsor B, Goeldner M (2008) Synthesis and photochemical properties of a light-activated fluorophore to label His-tagged proteins. Chem Commun (Camb) 1217–1219

    Google Scholar 

  53. Momotake A, Lindegger N, Niggli E, Barsotti RJ, Ellis-Davies GCR (2006) The nitrodibenzofuran chromophore: a new caging group for ultra-efficient photolysis in living cells. Nat Methods 3:35–40

    PubMed  CAS  Google Scholar 

  54. Gug S, Charon S, Specht A, Alarcon K, Ogden D, Zietz B, Leonard J, Haacke S, Bolze F, Nicoud J-F, Goeldner M (2008) Photolabile glutamate protecting group with high one- and two-photon uncaging efficiencies. Chembiochem 9:1303–1307

    PubMed  CAS  Google Scholar 

  55. Gug S, Bolze F, Specht A, Bourgogne C, Goeldner M, Nicoud J-F (2008) Molecular engineering of photoremovable protecting groups for two-photon uncaging. Angew Chem Int Ed 47:9525–9529

    CAS  Google Scholar 

  56. Papageorgiou G, Ogden DC, Barth A, Corrie JET (1999) Photorelease of carboxylic acids from 1-acyl-7-nitroindolines in aqueous solution: rapid and efficient photorelease of l-glutamate. J Am Chem Soc 121:6503–6504

    CAS  Google Scholar 

  57. Canepari M, Nelson L, Papageorgiou G, Corrie JET, Ogden D (2001) Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters. J Neurosci Methods 112:29–42

    PubMed  CAS  Google Scholar 

  58. Maier W, Corrie JET, Papageorgiou G, Laube B, Grewer C (2005) Comparative analysis of inhibitory effects of caged ligands for the NMDA receptor. J Neurosci Methods 142:1–9

    PubMed  CAS  Google Scholar 

  59. Morrison J, Wan P, Corrie JET, Papageorgiou G (2002) Mechanisms of photorelease of carboxylic acids from 1-acyl-7-nitroindolines in solutions of varying water content. Photochem Photobiol Sci 1:960–969

    PubMed  CAS  Google Scholar 

  60. Papageorgiou G, Ogden D, Kelly G, Corrie JET (2005) Synthetic and photochemical studies of substituted 1-acyl-7-nitroindolines. Photochem Photobiol Sci 4:887–896

    PubMed  CAS  Google Scholar 

  61. Cohen AD, Helgen C, Bochet CG, Toscano JP (2005) The mechanism of photoinduced acylation of amines by N-Acyl-5,7-dinitroindoline as determined by time-resolved infrared spectroscopy. Org Lett 7:2845–2848

    PubMed  CAS  Google Scholar 

  62. Papageorgiou G, Corrie JET (2000) Effects of aromatic substituents on the photocleavage of 1-acyl-7-nitroindolines. Tetrahedron 56:8197–8205

    CAS  Google Scholar 

  63. Zhang Y-P, Holbro N, Oertner TG (2008) Optical induction of plasticity at single synapses reveals input-specific accumulation of alpha CaMKII. Proc Natl Acad Sci USA 105:12039–12044

    PubMed  CAS  Google Scholar 

  64. Nikolenko V, Poskanzer KE, Yuste R (2007) Two-photon photostimulation and imaging of neural circuits. Nat Methods 4:943–950

    PubMed  CAS  Google Scholar 

  65. Beique J-C, Lin D-T, Kang M-G, Aizawa H, Takamiya K, Huganir RL (2006) Synapse-specific regulation of AMPA receptor function by PSD-95. Proc Natl Acad Sci USA 103:19535–19540

    PubMed  CAS  Google Scholar 

  66. Huang YH, Sinha SR, Fedoryak OD, Ellis-Davies GCR, Bergles DE (2005) Synthesis and characterization of 4-methoxy-7-nitroindolinyl-d-aspartate, a caged compound for selective activation of glutamate transporters and N-methyl-d-aspartate receptors in brain tissue. Biochemistry 44:3316–3326

    PubMed  CAS  Google Scholar 

  67. Fedoryak OD, Sul J-Y, Haydon PG, Ellis-Davies GCR (2005) Synthesis of a caged glutamate for efficient one- and two-photon photorelease on living cells. Chem Commun (Camb) 3664–3666

    Google Scholar 

  68. Ellis-Davies GCR, Matsuzaki M, Paukert M, Kasai H, Bergles DE (2007) 4-Carboxymethoxy-5,7-dinitroindolinyl-glu: an improved caged glutamate for expeditious ultraviolet and two-photon photolysis in brain slices. J Neurosci 27:6601–6604

    PubMed  CAS  Google Scholar 

  69. Papageorgiou G, Lukeman M, Wan P, Corrie JET (2004) An antenna triplet sensitiser for 1-acyl-7-nitroindolines improves the efficiency of carboxylic acid photorelease. Photochem Photobiol Sci 3:366–373

    PubMed  CAS  Google Scholar 

  70. Papageorgiou G, Ogden D, Corrie JET (2004) An antenna-sensitized nitroindoline precursor to enable photorelease of l-glutamate in high concentrations. J Org Chem 69:7228–7233

    PubMed  CAS  Google Scholar 

  71. Papageorgiou G, Corrie JET (2005) Optimized synthesis and photochemistry of antenna-sensitized 1-acyl-7-nitroindolines. Tetrahedron 61:609–616

    CAS  Google Scholar 

  72. Furuta T (2005) Photoremovable protecting groups used for the caging of biomolecules. Coumarin-4-ylmethyl phototriggers. In: Goeldner M, Givens RS (eds) Dynamic studies in biology: phototriggers, photoswitches, and caged biomolecules. Wiley-VCH, Weinheim, Germany, pp 29–55

    Google Scholar 

  73. Schade B, Hagen V, Schmidt R, Herbich R, Krause E, Eckardt T, Bendig J (1999) Deactivation behavior and excited state properties of (coumarin-4-yl)methyl derivatives. 1. Photocleavage of (7-methoxycoumarin-4-yl)methyl-caged acids with fluorescence enhancement. J Org Chem 64:9109–9117

    CAS  Google Scholar 

  74. Eckardt T, Hagen V, Schade B, Schmidt R, Schweitzer C, Bendig J (2002) Deactivation behavior and excited-state properties of (coumarin-4-yl)methyl derivatives. 2. Photocleavage of selected (coumarin-4-yl)methyl-caged adenosine cyclic 3′,5′-monophosphates with fluorescence enhancement. J Org Chem 67:703–710

    PubMed  CAS  Google Scholar 

  75. Schmidt R, Geissler D, Hagen V, Bendig J (2005) Kinetics study of the photocleavage of (coumarin-4-yl)methyl esters. J Phys Chem A 109:5000–5004

    PubMed  CAS  Google Scholar 

  76. Schmidt R, Geissler D, Hagen V, Bendig J (2007) Mechanism of photocleavage of (coumarin-4-yl)methyl esters. J Phys Chem A 111:5768–5774

    PubMed  CAS  Google Scholar 

  77. Papageorgiou G, Corrie JET (1997) Synthesis and properties of carbamoyl derivatives of photolabile benzoins. Tetrahedron 53:3917–3932

    CAS  Google Scholar 

  78. Papageorgiou G, Barth A, Corrie JET (2005) Flash photolytic release of alcohols from photolabile carbamates or carbonates is rate-limited by decarboxylation of the photoproduct. Photochem Photobiol Sci 4:216–220

    PubMed  CAS  Google Scholar 

  79. Furuta T, Noguchi K (2004) Controlling cellular systems with Bhc-caged compounds. Trends Anal Chem 23:511–519

    CAS  Google Scholar 

  80. Furuta T, Takeuchi H, Isozaki M, Takahashi Y, Kanehara M, Sugimoto M, Watanabe T, Noguchi K, Dore TM, Kurahashi T, Iwamura M, Tsien RY (2004) Bhc-cNMPs as either water-soluble or membrane-permeant photo-releasable cyclic nucleotides for both one and two-photon excitations. Chembiochem 5:1119–1128

    PubMed  CAS  Google Scholar 

  81. Ando H, Furuta T, Okamoto H (2004) Photo-mediated gene activation by using caged mRNA in zebrafish embryos. Methods Cell Biol 77:159–171

    PubMed  CAS  Google Scholar 

  82. Kawakami T, Cheng H, Hashiro S, Nomura Y, Tsukiji S, Furuta T, Nagamune T (2008) A caged phosphopeptide-based approach for photochemical activation of kinases in living cells. Chembiochem 9:1583–1586

    PubMed  CAS  Google Scholar 

  83. Lin W, Lawrence DS (2002) A strategy for the construction of caged diols using a photolabile protecting group. J Org Chem 67:2723–2726

    PubMed  CAS  Google Scholar 

  84. Suzuki AZ, Watanabe T, Kawamoto M, Nishiyama K, Yamashita H, Ishii M, Iwamura M, Furuta T (2003) Coumarin-4-ylmethoxycarbonyls as phototriggers for alcohols and phenols. Org Lett 5:4867–4870

    PubMed  CAS  Google Scholar 

  85. Quann EJ, Merino E, Furuta T, Huse M (2009) Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells. Nat Immunol 10:627–635

    PubMed  CAS  Google Scholar 

  86. Montgomery HJ, Perdicakis B, Fishlock D, Lajoie GA, Jervis E, Guillemette JG (2002) Photo-control of nitric oxide synthase activity using a caged isoform specific inhibitor. Bioorg Med Chem 10:1919–1927

    PubMed  CAS  Google Scholar 

  87. Perdicakis B, Montgomery HJ, Abbott GL, Fishlock D, Lajoie GA, Guillemette JG, Jervis E (2005) Photocontrol of nitric oxide production in cell culture using a caged isoform selective inhibitor. Bioorg Med Chem 13:47–57

    PubMed  CAS  Google Scholar 

  88. Goard M, Aakalu G, Fedoryak OD, Quinonez C, St Julien J, Schuman PSJ, EM DTM (2005) Light-mediated inhibition of protein synthesis. Chem Biol 12:685–693

    PubMed  CAS  Google Scholar 

  89. Furuta T, Watanabe T, Tanabe S, Sakyo J, Matsuba C (2007) Phototriggers for nucleobases with improved photochemical properties. Org Lett 9:4717–4720

    PubMed  CAS  Google Scholar 

  90. Katayama K, Tsukiji S, Furuta T, Nagamune T (2008) A bromocoumarin-based linker for synthesis of photocleavable peptidoconjugates with high photosensitivity. Chem Commun (Camb) 5399–5401

    Google Scholar 

  91. Wylie RG, Shoichet MS (2008) Two-photon micropatterning of amines within an agarose hydrogel. J Mater Chem 18:2716–2721

    CAS  Google Scholar 

  92. Lu M, Fedoryak OD, Moister BR, Dore TM (2003) Bhc-diol as a photolabile protecting group for aldehydes and ketones. Org Lett 5:2119–2122

    PubMed  CAS  Google Scholar 

  93. Kilic F, Kashikar ND, Schmidt R, Alvarez L, Dai L, Weyand I, Wiesner B, Goodwin N, Hagen V, Kaupp UB (2009) Caged progesterone: a new tool for studying rapid nongenomic actions of progesterone. J Am Chem Soc 131:4027–4030

    PubMed  CAS  Google Scholar 

  94. Geissler D, Antonenko YN, Schmidt R, Keller S, Krylova OO, Wiesner B, Bendig J, Pohl P, Hagen V (2005) (Coumarin-4-yl)methyl esters as highly efficient, ultrafast phototriggers for protons and their application to acidifying membrane surfaces. Angew Chem Int Ed 44:1195–1198

    CAS  Google Scholar 

  95. Geissler D, Kresse W, Wiesner B, Bendig J, Kettenmann H, Hagen V (2003) DMACM-caged adenosine nucleotides: ultrafast ­phototriggers for ATP, ADP, and AMP activated by long-wavelength irradiation. Chembiochem 4:162–170

    PubMed  CAS  Google Scholar 

  96. Hagen V, Frings S, Wiesner B, Helm S, Kaupp UB, Bendig J (2003) [7-(Dialkylamino)coumarin-4-yl]methyl-caged compounds as ultrafast and effective long-wavelength ­phototriggers of 8-bromo-substituted cyclic nucleotides. Chembiochem 4:434–442

    PubMed  CAS  Google Scholar 

  97. Hagen V, Bendig J, Frings S, Eckardt T, Helm S, Reuter D, Kaupp UB (2001) Highly efficient and ultrafast phototriggers for cAMP and cGMP by using long-wavelength UV/Vis-activation. Angew Chem Int Ed Engl 40:1046–1048

    CAS  Google Scholar 

  98. Schönleber RO, Bendig J, Hagen V, Giese B (2002) Rapid photolytic release of cytidine 5′-diphosphate from a coumarin derivative: a new tool for the investigation of ribonucleotide reductases. Bioorg Med Chem Lett 10:97–101

    Google Scholar 

  99. Shembekar VR, Chen Y, Carpenter BK, Hess GP (2005) A protecting group for carboxylic acids that can be photolyzed by visible light. Biochemistry 44:7107–7114

    PubMed  CAS  Google Scholar 

  100. Shembekar VR, Chen Y, Carpenter BK, Hess GP (2007) Coumarin-caged glycine that can be photolyzed within 3 micro s by visible light. Biochemistry 46:5479–5484

    PubMed  CAS  Google Scholar 

  101. Hagen V, Dekowski B, Nache V, Schmidt R, Geissler D, Lorenz D, Eichhorst J, Keller S, Kaneko H, Benndorf K, Wiesner B (2005) Coumarinylmethyl esters for ultra-fast release of high concentrations of cyclic nucleotides upon one- and two-photon photolysis. Angew Chem Int Ed 44:7887–7891

    CAS  Google Scholar 

  102. Hagen V, Dekowski B, Kotzur N, Lechler R, Wiesner B, Briand B, Beyermann M (2008) {7-[Bis(carboxymethyl)amino]coumarin-4-yl}methoxycarbonyl derivatives for photorelease of carboxylic acids, alcohols/phenols, thioalcohols/thiophenols, and amines. Chem Eur J 14:1621–1627

    PubMed  CAS  Google Scholar 

  103. Senda N, Momotake A, Arai T (2007) Synthesis and photocleavage of 7-[{Bis(carboxymethyl)amino}coumarin-4-yl]methyl-caged neurotransmitters. Bull Chem Soc Jpn 80:2384–2388

    CAS  Google Scholar 

  104. Fernandes MJG, Goncalves MST, Costa SPG (2008) Comparative study of polyaromatic and polyheteroaromatic fluorescent photocleavable protecting groups. Tetrahedron 64:3032–3038

    CAS  Google Scholar 

  105. Fernandes MJG, Goncalves MST, Costa SPG (2008) Neurotransmitter amino acid-oxobenzo[f]benzopyran conjugates: synthesis and photorelease studies. Tetrahedron 64:11175–11179

    CAS  Google Scholar 

  106. Piloto AM, Rovira D, Costa SPG, Goncalves MST (2006) Oxobenzo[f]benzopyrans as new fluorescent photolabile protecting groups for the carboxylic function. Tetrahedron 62:11955–11962

    CAS  Google Scholar 

  107. Miller KA (2002) Synthesis and characterization of naphthocoumarins as caged compounds [Honors thesis]. University of Georgia, Athens, GA

    Google Scholar 

  108. Gagey N, Neveu P, Jullien L (2007) Two-photon uncaging with the efficient 3,5-dibromo-2,4-dihydroxycinnamic caging group. Angew Chem Int Ed 46:2467–2469

    CAS  Google Scholar 

  109. Gagey N, Neveu P, Benbrahim C, Goetz B, Aujard I, Baudin J-B, Jullien L (2007) Two-photon uncaging with fluorescence reporting: evaluation of the o-hydroxycinnamic platform. J Am Chem Soc 129:9986–9998

    PubMed  CAS  Google Scholar 

  110. Gagey N, Emond M, Neveu P, Benbrahim C, Goetz B, Aujard I, Baudin J-B, Jullien L (2008) Alcohol uncaging with fluorescence reporting: evaluation of o-acetoxyphenyl methyloxazolone precursors. Org Lett 10:2341–2344

    PubMed  CAS  Google Scholar 

  111. Fedoryak OD, Dore TM (2002) Brominated hydroxyquinoline as a photolabile protecting group with sensitivity to multiphoton excitation. Org Lett 4:3419–3422

    PubMed  CAS  Google Scholar 

  112. Zhu Y, Pavlos CM, Toscano JP, Dore TM (2006) 8-Bromo-7-hydroxyquinoline as a photoremovable protecting group for physiological use: mechanism and scope. J Am Chem Soc 128:4267–4276

    PubMed  CAS  Google Scholar 

  113. An H-Y, Ma C, Nganga JL, Zhu Y, Dore TM, Phillips DL (2009) Resonance Raman characterization of different forms of ground-state 8-bromo-7-hydroxyquinoline caged acetate in aqueous solutions. J Phys Chem A 113:2831–2837

    PubMed  CAS  Google Scholar 

  114. Kim TG, Topp MR (2004) Ultrafast excited-state deprotonation and electron transfer in hydroxyquinoline derivatives. J Phys Chem A 108:10060–10065

    CAS  Google Scholar 

  115. Bardez E, Fedorov A, Berberan-Santos MN, Martinho JMG (1999) Photoinduced coupled proton and electron transfers. 2. 7-Hydroxyquinolinium ion. J Phys Chem A 103:4131–4136

    CAS  Google Scholar 

  116. Lee S-I, Jang D-J (1995) Proton transfers of aqueous 7-hydroxyquinoline in the first excited singlet, lowest triplet, and ground states. J Phys Chem 99:7537–7541

    CAS  Google Scholar 

  117. Davis MJ, Kragor CH, Reddie KG, Wilson HC, Zhu Y, Dore TM (2009) Substituent effects on the sensitivity of a quinoline photoremovable protecting group to one- and two-photon excitation. J Org Chem 74:1721–1729

    PubMed  CAS  Google Scholar 

  118. Adams SR, Lev-Ram V, Tsien RY (1997) A new caged Ca2+, azid-1, is far more photosensitive than nitrobenzyl-based chelators. Chem Biol 4:867–878

    PubMed  CAS  Google Scholar 

  119. Sakata T, Jackson DK, Mao S, Marriott G (2008) Optically switchable chelates: optical control and sensing of metal ions. J Org Chem 73:227–233

    PubMed  CAS  Google Scholar 

  120. Ford PC (2008) Polychromophoric metal complexes for generating the bioregulatory agent nitric oxide by single- and two-photon excitation. Acc Chem Res 41:190–200

    PubMed  CAS  Google Scholar 

  121. Wecksler S, Mikhailovsky A, Ford PC (2004) Photochemical production of nitric oxide via two-photon excitation with NIR light. J Am Chem Soc 126:13566–13567

    PubMed  CAS  Google Scholar 

  122. Wecksler SR, Mikhailovsky A, Korystov D, Ford PC (2006) A two-photon antenna for photochemical delivery of nitric oxide from a water-soluble, dye-derivatized iron nitrosyl complex using NIR light. J Am Chem Soc 128:3831–3837

    PubMed  CAS  Google Scholar 

  123. Wecksler SR, Mikhailovsky A, Korystov D, Buller F, Kannan R, Tan L-S, Ford PC (2007) Single- and two-photon properties of a dye-derivatized Roussin’s red salt ester (Fe2(micro -RS)2(NO)4) with a large TPA cross section. Inorg Chem 46:395–402

    PubMed  CAS  Google Scholar 

  124. Zheng Q, Bonoiu A, Ohulchanskyy TY, He GS, Prasad PN (2008) Water-soluble two-photon absorbing nitrosyl complex for light-activated therapy through nitric oxide release. Mol Pharm 5:389–398

    PubMed  CAS  Google Scholar 

  125. Hishikawa K, Nakagawa H, Furuta T, Fukuhara K, Tsumoto H, Suzuki T, Miyata N (2009) Photoinduced nitric oxide release from a hindered nitrobenzene derivative by two-photon excitation. J Am Chem Soc 131:7488–7489

    PubMed  CAS  Google Scholar 

  126. Nikolenko V, Yuste R, Zayat L, Baraldo LM, Etchenique R (2005) Two-photon uncaging of neurochemicals using inorganic metal complexes. Chem Commun (Camb) 1752–1754

    Google Scholar 

  127. Nicolaou VKC, Dai WM, Wendeborn SV, Smith AL, Torisawa Y, Maligres P, Hwang CK (1991) Enediyne compounds with acid, base, and light sensitive trigger groups. Chemical simulation of dynemicin A reaction cascade. Angew Chem 103:1034–1038

    CAS  Google Scholar 

  128. Wender PA, Zercher CK, Beckham S, Haubold EM (1993) A photochemically triggered DNA cleaving agent: synthesis, mechanistic and DNA cleavage studies on a new analog of the anti-tumor antibiotic dynemicin. J Org Chem 58:5867–5869

    CAS  Google Scholar 

  129. Basak A, Bdour HM, Shain JC, Mandal S, Rudra KR, Nag S (2000) DNA-cleavage studies on N-substituted monocyclic enediynes: enhancement of potency by incorporation of intercalating or electron poor aromatic ring and subsequent design of a novel phototriggerable acyclic enediyne. Bioorg Med Chem Lett 10:1321–1325

    PubMed  CAS  Google Scholar 

  130. Urdabayev NK, Poloukhtine A, Popik VV (2006) Two-photon induced photodecarbonylation reaction of cyclopropenones. Chem Commun (Camb) 454–456

    Google Scholar 

  131. Poloukhtine A, Popik VV (2006) Two-photon photochemical generation of reactive enediyne. J Org Chem 71:7417–7421

    PubMed  CAS  Google Scholar 

  132. Urdabayev NK, Popik VV (2004) Wolff rearrangement of 2-diazo-1(2H)-naphthalenone induced by nonresonant two-photon absorption of NIR radiation. J Am Chem Soc 126:4058–4059

    PubMed  CAS  Google Scholar 

  133. Dyer J, Jockusch S, Balsanek V, Sames D, Turro NJ (2005) Two-photon induced uncaging of a reactive intermediate. Multiphoton in situ detection of a potentially valuable label for biological applications. J Org Chem 70:2143–2147

    PubMed  CAS  Google Scholar 

  134. Goodwin AP, Mynar JL, Ma Y, Fleming GR, Frechet JMJ (2005) Synthetic micelle sensitive to IR light via a two-photon process. J Am Chem Soc 127:9952–9953

    PubMed  CAS  Google Scholar 

  135. Mynar JL, Goodwin AP, Cohen JA, Ma Y, Fleming GR, Frechet JMJ (2007) Two-photon degradable supramolecular assemblies of linear-dendritic copolymers. Chem Commun (Camb) 2081–2082

    Google Scholar 

  136. Babin J, Pelletier M, Lepage M, Allard J-F, Morris D, Zhao Y (2009) A new two-photon-sensitive block copolymer nanocarrier. Angew Chem Int Ed 48:3329–3332, S/1–S/5

    CAS  Google Scholar 

  137. Belfield KD, Bondar MV, Liu Y, Przhonska OV (2003) Photophysical and photochemical properties of 5,7-dimethoxycoumarin under one- and two-photon excitation. J Phys Org Chem 16:69–78

    CAS  Google Scholar 

  138. Kim HC, Kreiling S, Greiner A, Hampp N (2003) Two-photon-induced cycloreversion reaction of coumarin photodimers. Chem Phys Lett 372:899–903

    CAS  Google Scholar 

  139. Kim HC, Haertner S, Hampp N (2008) Single- and two-photon absorption induced photocleavage of dimeric coumarin linkers: therapeutic versus passive photocleavage in ophthalmologic applications. J Photochem Photobiol A 197:239–244

    CAS  Google Scholar 

  140. Echevarria W, Leite MF, Guerra MT, Zipfel WR, Nathanson MH (2003) Regulation of calcium signals in the nucleus by a ­nucleoplasmic reticulum. Nat Cell Biol 5:440–446

    PubMed  CAS  Google Scholar 

  141. Milburn T, Matsubara N, Billington AP, Udgaonkar JB, Walker JW, Carpenter BK, Webb WW, Marque J, Denk W, McCray JA, Hess GP (1989) Synthesis, photochemistry, and biological activity of a caged photolabile acetylcholine receptor ligand. Biochemistry 28:49–55

    PubMed  CAS  Google Scholar 

  142. Billington AP, Walstrom KM, Ramesh D, Guzikowski AP, Carpenter BK, Hess GP (1992) Synthesis and photochemistry of photolabile N-glycine derivatives and effects of one on the glycine receptor. Biochemistry 31:5500–5507

    PubMed  CAS  Google Scholar 

  143. Wieboldt R, Gee KR, Niu L, Ramesh D, Carpenter BK, Hess GP (1994) Photolabile precursors of glutamate: synthesis, ­photochemical properties, and activation of glutamate receptors on a microsecond time scale. Proc Natl Acad Sci USA 91:8752–8756

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Kyle T. Harris and Steven D. Flynn for helpful comments and suggestions. This work was supported in part by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Dore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Dore, T.M., Wilson, H.C. (2011). Chromophores for the Delivery of Bioactive Molecules with Two-Photon Excitation. In: Chambers, J., Kramer, R. (eds) Photosensitive Molecules for Controlling Biological Function. Neuromethods, vol 55. Humana Press. https://doi.org/10.1007/978-1-61779-031-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-031-7_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-030-0

  • Online ISBN: 978-1-61779-031-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics