Skip to main content

Are Caged Compounds Still Useful?

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 55))

Abstract

Since much of the life of cells is controlled by their chemistry, caged compounds can be used to intervene in this life in a myriad of specific ways. Organic chemists have synthesized the widest possible array of caged compounds for use by biologists. The smallest possible chemical unit (protons) to the “largest” (RNA and DNA) have been caged. Further, nonnatural products have been caged and used for blocking one aspect of cell function. Many caged compounds have been used for rapid activation of cell function, as uncaging often occurs in less than a millisecond. Studies with caged calcium and caged glutamate have proved particularly powerful in this regard. But will caged compounds continue into the second decade of the third millennium, their fourth decade? With the rise of other optical methods for control of cell function, are caged compounds still useful?

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tsai HC, Zhang F, Adamantidis A et al (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324(5930):1080–1084

    Article  PubMed  CAS  Google Scholar 

  2. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324(5925):354–359

    Article  PubMed  CAS  Google Scholar 

  3. Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K (2009) Temporally precise in vivo control of intracellular signalling. Nature 458(7241):1025–1029

    Article  PubMed  CAS  Google Scholar 

  4. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702

    Article  PubMed  CAS  Google Scholar 

  5. Cardin JA, Carlen M, Meletis K et al (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459(7247):663–667

    Article  PubMed  CAS  Google Scholar 

  6. Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7(12):1381–1386

    Article  PubMed  CAS  Google Scholar 

  7. Volgraf M, Gorostiza P, Numano R, Kramer RH, Isacoff EY, Trauner D (2006) Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2(1):47–52

    Article  PubMed  CAS  Google Scholar 

  8. Fortin DL, Banghart MR, Dunn TW et al (2008) Photochemical control of endogenous ion channels and cellular excitability. Nat Meth 5(4):331–338

    CAS  Google Scholar 

  9. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    Article  PubMed  CAS  Google Scholar 

  10. Kramer RH, Chambers JJ, Trauner D (2005) Photochemical tools for remote control of ion channels in excitable cells. Nat Chem Biol 1(7):360–365

    Article  PubMed  CAS  Google Scholar 

  11. Kaplan JH, Forbush B III, Hoffman JF (1978) Rapid photolytic release of adenosine 5’-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts. Biochemistry 17(10):1929–1935

    Article  PubMed  CAS  Google Scholar 

  12. Fork RL (1971) Laser stimulation of nerve cells in Aplysia. Science 171(974):907–908

    Article  PubMed  CAS  Google Scholar 

  13. Goldman YE, Hibberd MG, McCray JA, Trentham DR (1982) Relaxation of muscle fibres by photolysis of caged ATP. Nature 300(5894):701–705

    Article  PubMed  CAS  Google Scholar 

  14. Goldman YE, Hibberd MG, Trentham DR (1984) Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5’-triphosphate. J Physiol 354:577–604

    PubMed  CAS  Google Scholar 

  15. Goldman YE, Hibberd MG, Trentham DR (1984) Initiation of active contraction by photogeneration of adenosine-5’-triphosphate in rabbit psoas muscle fibres. J Physiol 354:605–624

    PubMed  CAS  Google Scholar 

  16. Hibberd MG, Dantzig JA, Trentham DR, Goldman YE (1985) Phosphate release and force generation in skeletal muscle fibers. Science 228(4705):1317–1319

    Article  PubMed  CAS  Google Scholar 

  17. McCray JA, Herbette L, Kihara T, Trentham DR (1980) A new approach to time-resolved studies of ATP-requiring biological systems; laser flash photolysis of caged ATP. Proc Natl Acad Sci USA 77(12):7237–7241

    Article  PubMed  CAS  Google Scholar 

  18. Engels J, Schlaeger EJ (1977) Synthesis, structure, and reactivity of adenosine cyclic 3’, 5’-phosphate benzyl triesters. J Med Chem 20(7):907–911

    Article  PubMed  CAS  Google Scholar 

  19. Nerbonne JM, Richard S, Nargeot J, Lester HA (1984) New photoactivatable cyclic nucleotides produce intracellular jumps in cyclic AMP and cyclic GMP concentrations. Nature 310(5972):74–76

    Article  PubMed  CAS  Google Scholar 

  20. Walker JW, Somlyo AV, Goldman YE, Somlyo AP, Trentham DR (1987) Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1, 4, 5-trisphosphate. Nature 327(6119):249–252

    Article  PubMed  CAS  Google Scholar 

  21. Ellis-Davies GC (2007) Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat Meth 4(8):619–628

    Article  CAS  Google Scholar 

  22. Mayer G, Heckel A (2006) Biologically active molecules with a “light switch”. Angew Chem Int Ed Engl 45(30):4900–4921

    Article  PubMed  CAS  Google Scholar 

  23. Ellis-Davies GC (2008) Neurobiology with caged calcium. Chem Rev 108(5):1603–1613

    Article  PubMed  CAS  Google Scholar 

  24. Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19(11):2396–2404

    Article  PubMed  CAS  Google Scholar 

  25. Tsien RY, Zucker RS (1986) Control of cytoplasmic calcium with photolabile tetracarboxylate 2-nitrobenzhydrol chelators. Biophys J 50(5):843–853

    Article  PubMed  CAS  Google Scholar 

  26. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    PubMed  CAS  Google Scholar 

  27. Adams SR, Kao JPY, Grynkiewicz G, Minta A, Tsien RY (1988) Biologically useful chelators that release ca-2+ upon illumination. J Am Chem Soc 110(10):3212–3220

    Article  CAS  Google Scholar 

  28. Ellisdavies GCR, Kaplan JH (1988) A new class of photolabile chelators for the rapid release of divalent-cations – generation of caged-ca and caged-mg. J Org Chem 53(9):1966–1969

    Article  CAS  Google Scholar 

  29. Kaplan JH, Ellis-Davies GC (1988) Photolabile chelators for the rapid photorelease of divalent cations. Proc Natl Acad Sci USA 85(17):6571–6575

    Article  PubMed  CAS  Google Scholar 

  30. Ellis-Davies GC (2006) DM-nitrophen AM is caged magnesium. Cell Calcium 39(6):471–473

    Article  PubMed  CAS  Google Scholar 

  31. Thomas P, Almers W (1991) Simultaneous measurements of increased Ca and secretion in single rat melanotrophs evoked by photolytic release of caged Ca. Biophys J 59:597a

    Google Scholar 

  32. Thomas P, Wong JG, Almers W (1993) Millisecond studies of secretion in single rat pituitary cells stimulated by flash photolysis of caged Ca2+. EMBO J 12(1):303–306

    PubMed  CAS  Google Scholar 

  33. Neher E, Zucker RS (1993) Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10(1):21–30

    Article  PubMed  CAS  Google Scholar 

  34. Becherer U, Rettig J (2006) Vesicle pools, docking, priming, and release. Cell Tissue Res 326(2):393–407

    Article  PubMed  Google Scholar 

  35. Sorensen JB (2004) Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles. Pflugers Arch 448(4):347–362

    Article  PubMed  CAS  Google Scholar 

  36. Katz B, Miledi R (1965) The effect of calcium on acetylcholine release from motor nerve terminals. Proc R Soc Lond B Biol Sci 161:496–503

    Article  PubMed  CAS  Google Scholar 

  37. Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406(6798):889–893

    Article  PubMed  CAS  Google Scholar 

  38. Ellis-Davies GC, Kaplan JH (1994) Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. Proc Natl Acad Sci USA 91(1):187–191

    Article  PubMed  CAS  Google Scholar 

  39. Ellis-Davies GC, Kaplan JH, Barsotti RJ (1996) Laser photolysis of caged calcium: rates of calcium release by nitrophenyl-EGTA and DM-nitrophen. Biophys J 70(2):1006–1016

    Article  PubMed  CAS  Google Scholar 

  40. Wieboldt R, Gee KR, Niu L, Ramesh D, Carpenter BK, Hess GP (1994) Photolabile precursors of glutamate: synthesis, photochemical properties, and activation of glutamate receptors on a microsecond time scale. Proc Natl Acad Sci USA 91(19):8752–8756

    Article  PubMed  CAS  Google Scholar 

  41. Eder M, Zieglgansberger W, Dodt HU (2004) Shining light on neurons – elucidation of neuronal functions by photostimulation. Rev Neurosci 15(3):167–183

    Article  PubMed  Google Scholar 

  42. Callaway EM, Katz LC (1993) Photo-stimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci USA 90(16):7661–7665

    Article  PubMed  CAS  Google Scholar 

  43. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  PubMed  CAS  Google Scholar 

  44. Denk W (1994) Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. Proc Natl Acad Sci USA 91(14):6629–6633

    Article  PubMed  CAS  Google Scholar 

  45. Milburn T, Matsubara N, Billington AP et al (1989) Synthesis, photochemistry, and biological-activity of a caged photolabile acetylcholine-receptor ligand. Biochemistry 28(1):49–55

    Article  PubMed  CAS  Google Scholar 

  46. Lipp P, Niggli E (1998) Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in Guinea-pig cardiac myocytes. J Physiol 508(Pt 3):801–809

    Article  PubMed  CAS  Google Scholar 

  47. Ellis-Davies GCR (1999) Localized photolysis of caged compounds. J Gen Physiol 114:1a

    Google Scholar 

  48. Papageorgiou G, Ogden DC, Barth A, Corrie JET (1999) Photorelease of carboxylic acids from 1-acyl-7-nitroindolines in aqueous solution: rapid and efficient photorelease of L-glutamate. J Am Chem Soc 121(27):6503–6504

    Article  CAS  Google Scholar 

  49. Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4(11):1086–1092

    Article  PubMed  CAS  Google Scholar 

  50. Papageorgiou G, Ogden D, Kelly G, Corrie JET (2005) Synthetic and photochemical studies of substituted 1-acyl-7-nitroindolines. Photochem Photobiol Sci 4(11):887–896

    Article  PubMed  CAS  Google Scholar 

  51. Ellis-Davies GC, Matsuzaki M, Paukert M, Kasai H, Bergles DE (2007) 4-Carboxymethoxy-5, 7-dinitroindolinyl-Glu: an improved caged glutamate for expeditious ultraviolet and two-photon photolysis in brain slices. J Neurosci 27(25):6601–6604

    Article  PubMed  CAS  Google Scholar 

  52. Carter AG, Sabatini BL (2004) State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44(3):483–493

    Article  PubMed  CAS  Google Scholar 

  53. Smith MA, Ellis-Davies GC, Magee JC (2003) Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. J Physiol 548(Pt 1):245–258

    Article  PubMed  CAS  Google Scholar 

  54. Araya R, Jiang J, Eisenthal KB, Yuste R (2006) The spine neck filters membrane potentials. Proc Natl Acad Sci USA 103(47):17961–17966

    Article  PubMed  CAS  Google Scholar 

  55. Bloodgood BL, Sabatini BL (2005) Neuronal activity regulates diffusion across the neck of dendritic spines. Science 310(5749):866–869

    Article  PubMed  CAS  Google Scholar 

  56. Bloodgood BL, Sabatini BL (2007) Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 53(2):249–260

    Article  PubMed  CAS  Google Scholar 

  57. Noguchi J, Matsuzaki M, Ellis-Davies GC, Kasai H (2005) Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron 46(4):609–622

    Article  PubMed  CAS  Google Scholar 

  58. Ngo-Anh TJ, Bloodgood BL, Lin M, Sabatini BL, Maylie J, Adelman JP (2005) SK channels and NMDA receptors form a Ca2+ -mediated feedback loop in dendritic spines. Nat Neurosci 8(5):642–649

    Article  PubMed  CAS  Google Scholar 

  59. Tanaka J, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GC, Kasai H (2008) Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319(5870):1683–1687

    Article  PubMed  CAS  Google Scholar 

  60. Araya R, Nikolenko V, Eisenthal KB, Yuste R (2007) Sodium channels amplify spine potentials. Proc Natl Acad Sci USA 104(30):12347–12352

    Article  PubMed  CAS  Google Scholar 

  61. Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50(2):291–307

    Article  PubMed  CAS  Google Scholar 

  62. Losonczy A, Makara JK, Magee JC (2008) Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452(7186):436–441

    Article  PubMed  CAS  Google Scholar 

  63. Remy S, Csicsvari J, Beck H (2009) Activity-dependent control of neuronal output by local and global dendritic spike attenuation. Neuron 61(6):906–916

    Article  PubMed  CAS  Google Scholar 

  64. Lee SJ, Escobedo-Lozoya Y, Szatmari EM, Yasuda R (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458(7236):299–304

    Article  PubMed  CAS  Google Scholar 

  65. Sobczyk A, Scheuss V, Svoboda K (2005) NMDA receptor subunit-dependent [Ca2+] signaling in individual hippocampal dendritic spines. J Neurosci 25(26):6037–6046

    Article  PubMed  CAS  Google Scholar 

  66. Harvey CD, Yasuda R, Zhong H, Svoboda K (2008) The spread of Ras activity triggered by activation of a single dendritic spine. Science 321(5885):136–140

    Article  PubMed  CAS  Google Scholar 

  67. Harvey CD, Svoboda K (2007) Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450(7173):1195–1200

    Article  PubMed  CAS  Google Scholar 

  68. Sobczyk A, Svoboda K (2007) Activity-dependent plasticity of the NMDA-receptor fractional Ca2+ current. Neuron 53(1):17–24

    Article  PubMed  CAS  Google Scholar 

  69. Gasparini S, Magee JC (2006) State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J Neurosci 26(7):2088–2100

    Article  PubMed  CAS  Google Scholar 

  70. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429(6993):761–766

    Article  PubMed  CAS  Google Scholar 

  71. Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GC, Kasai H (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57(5):719–729

    Article  PubMed  CAS  Google Scholar 

  72. Matsuzaki M, Ellis-Davies GC, Kasai H (2008) Three-dimensional mapping of unitary synaptic connections by two-photon macro photolysis of caged glutamate. J Neurophysiol 99(3):1535–1544

    Article  PubMed  CAS  Google Scholar 

  73. Nikolenko V, Poskanzer KE, Yuste R (2007) Two-photon photostimulation and imaging of neural circuits. Nat Meth 4(11):943–950

    Article  CAS  Google Scholar 

  74. Mendel D, Ellman JA, Schultz PG (1991) Construction of a light-activated protein by unnatural amino-acid mutagenesis. J Am Chem Soc 113(7):2758–2760

    Article  CAS  Google Scholar 

  75. Marriott G (1994) Caged protein conjugates and light-directed generation of protein-activity – preparation, photoactivation, and spectroscopic characterization of caged g-actin conjugates. Biochemistry 33(31):9092–9097

    Article  PubMed  CAS  Google Scholar 

  76. Ando H, Furuta T, Tsien RY, Okamoto H (2001) Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nat Genet 28(4):317–325

    Article  PubMed  CAS  Google Scholar 

  77. Okamoto H, Hirate Y, Ando H (2004) Systematic identification of factors in zebrafish regulating the early midbrain and cerebellar development by odered differential display and caged mRNA technology. Front Biosci 9:93–99

    Article  PubMed  CAS  Google Scholar 

  78. Ando H, Kobayashi M, Tsubokawa T, Uyemura K, Furuta T, Okamoto H (2005) Lhx2 mediates the activity of Six3 in zebrafish forebrain growth. Dev Biol 287(2):456–468

    Article  PubMed  CAS  Google Scholar 

  79. Shigeri Y, Tatsu Y, Yumoto N (2001) Synthesis and application of caged peptides and proteins. Pharmacol Ther 91(2):85–92

    Article  PubMed  CAS  Google Scholar 

  80. Lee HM, Larson DR, Lawrence DS (2009) Illuminating the chemistry of life: design, synthesis, and applications of “caged” and related photoresponsive compounds. ACS Chem Biol 4(6):409–427

    Article  PubMed  CAS  Google Scholar 

  81. Zemelman BV, Nesnas N, Lee GA, Miesenbock G (2003) Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc Natl Acad Sci USA 100(3):1352–1357

    Article  PubMed  CAS  Google Scholar 

  82. Lev-Ram V, Jiang T, Wood J, Lawrence DS, Tsien RY (1997) Synergies and coincidence requirements between NO, cGMP, and Ca2+ in the induction of cerebellar long-term depression. Neuron 18(6):1025–1038

    Article  PubMed  CAS  Google Scholar 

  83. Makings LR, Tsien RY (1994) Caged nitric oxide. Stable organic molecules from which nitric oxide can be photoreleased. J Biol Chem 269(9):6282–6285

    PubMed  CAS  Google Scholar 

  84. Walker JW, Gilbert SH, Drummond RM et al (1998) Signaling pathways underlying eosinophil cell motility revealed by using caged peptides. Proc Natl Acad Sci USA 95(4):1568–1573

    Article  PubMed  CAS  Google Scholar 

  85. Khan S, Castellano F, Spudich JL et al (1993) Excitatory signaling in bacterial probed by caged chemoeffectors. Biophys J 65(6):2368–2382

    Article  PubMed  CAS  Google Scholar 

  86. Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE 2(3):e299

    Article  PubMed  Google Scholar 

  87. Zhang F, Wang LP, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633–639

    Article  PubMed  CAS  Google Scholar 

  88. Kim JM, Hwa J, Garriga P, Reeves PJ, RajBhandary UL, Khorana HG (2005) Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops. Biochemistry 44(7):2284–2292

    Article  PubMed  CAS  Google Scholar 

  89. Schroder-Lang S, Schwarzel M, Seifert R et al (2007) Fast manipulation of cellular cAMP level by light in vivo. Nat Meth 4(1):39–42

    Article  Google Scholar 

  90. Li X, Gutierrez DV, Hanson MG et al (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci USA 102(49):17816–17821

    Article  PubMed  CAS  Google Scholar 

  91. Wang H, Peca J, Matsuzaki M et al (2007) High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci USA 104(19):8143–8148

    Article  PubMed  CAS  Google Scholar 

  92. Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12(2):229–234

    Article  PubMed  CAS  Google Scholar 

  93. Lin JY, Lin MZ, Steinbach P, Tsien RY (2009) Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys J 96(5):1803–1814

    Article  PubMed  CAS  Google Scholar 

  94. Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36(1–4):129–139

    Article  PubMed  Google Scholar 

  95. Bertalan K. Andrasfalvy, Boris V. Zemelman, Jianyong Tang, and Alipasha Vaziri (2010) Two-photon single-cell optogenetic control of neuronal activity by sculpted light 107(26):11981–11986

    Google Scholar 

  96. Eirini Papagiakoumou, Francesca Anselmi, Aurélien Bègue, Vincent de Sars, Jesper Glückstad, Ehud Y Isacoff & Valentina Emiliani (2010) Nature methods 7(10):848–854

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham C. R. Ellis-Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Ellis-Davies, G.C.R. (2011). Are Caged Compounds Still Useful?. In: Chambers, J., Kramer, R. (eds) Photosensitive Molecules for Controlling Biological Function. Neuromethods, vol 55. Humana Press. https://doi.org/10.1007/978-1-61779-031-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-031-7_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-030-0

  • Online ISBN: 978-1-61779-031-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics