The Use and Abuse of -Omes

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 719)

Abstract

The diverse fields of Omics research share a common logical structure combining a cataloging effort for a particular class of molecules or interactions, the underlying -ome, and a quantitative aspect attempting to record spatiotemporal patterns of concentration, expression, or variation. Consequently, these fields also share a common set of difficulties and limitations. In spite of the great success stories of Omics projects over the last decade, much remains to be understood not only at the technological, but also at the conceptual level. Here, we focus on the dark corners of Omics research, where the problems, limitations, conceptual difficulties, and lack of knowledge are hidden.

Key words

Omics Systems biology Data integration Annotation Assumptions Limitations 

References

  1. 1.
    Lederberg, J., McCray, A. T. (2001) “ome sweet” omics – a genealogical treasury of words. The Scientist 15(7), 7–8.Google Scholar
  2. 2.
    Somel, M., Creely, H., Franz, H., et al. (2008) Human and chimpanzee gene expression differences replicated in mice fed different diets. PLoS ONE 3, e1504.PubMedCrossRefGoogle Scholar
  3. 3.
    Binder, H., Kirsten, T., Löffler, M., Stadler, P. F. (2004) The sensitivity of microarray oligonucleotide probes – variability and the effect of base composition. J Phys Chem 108, 18003–18014.Google Scholar
  4. 4.
    Binder, H., Preibisch, S. (2008) “Hook” calibration of GeneChipmicroarrays: theory and algorithm. Alg Mol Biol 3, 12.CrossRefGoogle Scholar
  5. 5.
    Tomancak, P., Beaton, A., Weiszmann, R., et al. (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 3, R0088.CrossRefGoogle Scholar
  6. 6.
    Pieper, U., Eswar, N., Webb, B. M., et al. (2009) MODBASE, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 37, D347–D354.PubMedCrossRefGoogle Scholar
  7. 7.
    Ruby, J. G., Jan, C., Player, C., et al. (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193–1207.PubMedCrossRefGoogle Scholar
  8. 8.
    Gingeras, T. R. (2009) Implications of chimaeric non-co-linear transcripts. Nature 461, 206–211.PubMedCrossRefGoogle Scholar
  9. 9.
    Li, H., Wang, J., Ma, X., Sklar, J. (2009) Gene fusions and RNA trans-splicing in normal and neoplastic human cells. Cell Cycle 8, 218–222.PubMedCrossRefGoogle Scholar
  10. 10.
    The ENCODE Project Consortium (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816.CrossRefGoogle Scholar
  11. 11.
    Pennisi, E. (2003) A low number wins the genesweep pool. Science 300, 1484.PubMedCrossRefGoogle Scholar
  12. 12.
    Prohaska, S. J., Stadler, P. F. (2008) “Genes” Theory Biosci 127, 215–221.PubMedCrossRefGoogle Scholar
  13. 13.
    Douaud, M., Fève, K., Gerus, M., et al. (2008) Addition of the microchromosome GGA25 to the chicken genome sequence assembly through radiation hybrid and genetic mapping. BMC Genomics 9, 129.PubMedCrossRefGoogle Scholar
  14. 14.
    Scheibye-Alsing, K., Hoffmann, S., Frankel, A. M., et al. (2009) Sequence assembly. Comp Biol Chem 33, 121–136.CrossRefGoogle Scholar
  15. 15.
    Richardson, M. K., Crooijmans, R. P., Groenen, M. A. (2007) Sequencing and genomic annotation of the chicken (Gallus gallus) Hox clusters, and mapping of evolutionarily conserved regions. Cytogenet Genome Res 117, 110–119.PubMedCrossRefGoogle Scholar
  16. 16.
    Katz, L. A. (2005) Evolution and implications of genome rearrangements in ciliates. J Euk Microbiol 52, 7S–27S.CrossRefGoogle Scholar
  17. 17.
    Duharcourt, S., Lepère, G., Meyer, E. (2009) Developmental genome rearrangements in ciliates: a natural genomic subtraction mediated by non-coding transcripts. Trends Genet 25, 344–350.PubMedCrossRefGoogle Scholar
  18. 18.
    Smith, J. J., Antonacci, F., Eichler, E. E., Amemiya, C. T. (2009) Programmed loss of millions of base pairs from a vertebrate genome. Proc Natl Acad Sci USA 106, 11212–11217.PubMedCrossRefGoogle Scholar
  19. 19.
    Schena, M., Shalon, D., Davis, R. W., Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.PubMedCrossRefGoogle Scholar
  20. 20.
    Maeda, N., Kasukawa, T., Oyama, R., et al. (2006) Transcript annotation in FANTOM3: Mouse gene catalog based on physical cDNAs. PLoS Genetics 2, e62.Google Scholar
  21. 21.
    Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–218.Google Scholar
  22. 22.
    Hiller, M., Findeiß, S., Lein, S., et al. (2009) Conserved introns reveal novel transcripts in Drosophila melanogaster. Genome Res 19, 1289–1300.PubMedCrossRefGoogle Scholar
  23. 23.
    Kapranov, P., Cheng, J., Dike, S., et al. (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488.PubMedCrossRefGoogle Scholar
  24. 24.
    Dinger, M. E., Amaral, P. P., Mercer, T. R., Mattick, J. S. (2009) Pervasive transcription of the eukaryotic genome: functional indices and conceptual implications. Brief Funct Genomic Proteomic 8, 407–423.PubMedCrossRefGoogle Scholar
  25. 25.
    Frise, E., Hammonds, A. S., Celniker, S. E. (2010) Systematic image-driven analysis of the spatial Drosophila embryonic expression landscape. Mol Syst Biol 6, 345.PubMedCrossRefGoogle Scholar
  26. 26.
    Kumar, S., Jayaraman, K., Panchanathan, S., Gurunathan, R., Marti-Subirana, A., Newfeld, S. J. (2002) BEST: a novel computational approach for comparing gene expression patterns from early stages of Drosophila melanogaster development. Genetics 162, 2037–2047.PubMedGoogle Scholar
  27. 27.
    Ye, J., Chen, J., Janardan, R., Kumar, S. (2008) Developmental stage annotation of Drosophila gene expression pattern images via an entire solution path for LDA. ACM Trans Knowl Discov Data 2, 1–21.CrossRefGoogle Scholar
  28. 28.
    Heffel, A., Stadler, P. F., Prohaska, S. J., Kauer, G., Kuska, J.-P. Process flow for classification and clustering of fruit fly gene expression patterns. In: Proceedings of the 15th IEEE International Conference on Image Processing, ICIP 2008. IEEE, 2008 721–724.Google Scholar
  29. 29.
    Aebersold, R., Mann, M. (2003) Mass ­spectrometry-based proteomics. Nature 422, 198–207.PubMedCrossRefGoogle Scholar
  30. 30.
    Johnson, R. S., Davis, M. T., Taylor, J. A., Patterson, S. D. (2005) Informatics for protein identification by mass spectrometry. Methods 35, 223–236.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu, J., Bell, A. W., Bergeron, J. J. M., et al. (2007) Methods for peptide identification by spectral comparison. Proteome Sci 5, 3.PubMedCrossRefGoogle Scholar
  32. 32.
    Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K., Stein, S. E., Aebersold, R. (2008) Building consensus spectral libraries for peptide identification in proteomics. Nat Methods 5, 873–875.PubMedCrossRefGoogle Scholar
  33. 33.
    Garbis, S., Lubec, G., Fountoulakis, M. (2005) Limitations of current proteomics technologies. J Chromatography A 1077, 1–18.CrossRefGoogle Scholar
  34. 34.
    Klein, C., Aivaliotis, M., Olsen, J. V., et al. (2007) The low molecular weight proteome of Halobacterium salinarum. J Proteome Res 6, 1510–1518.PubMedCrossRefGoogle Scholar
  35. 35.
    Reinders, J., Sickmann, A. (2007) Modificomics: posttranslational modifications beyond protein phosphorylation and glycosylation. Biomol Eng 24, 169–177.PubMedCrossRefGoogle Scholar
  36. 36.
    Fu, Y., Jia, W., Lu, Z., et al. (2009) Efficient discovery of abundant post-translational modifications and spectral pairs using peptide mass and retention time differences. BMC Bioinformatics 10 (Suppl 1), S50.Google Scholar
  37. 37.
    Schubert, W., Bonnekoh, B., Pommer, A. J., et al. (1270–1278) Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol 24, 2006.Google Scholar
  38. 38.
    Scalbert, A., Brennan, L., Fiehn, O., et al. (2009) Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics 5, 435–458.PubMedCrossRefGoogle Scholar
  39. 39.
    Weber, M., Davies, J. J., Wittig, D., et al. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37, 853–862.PubMedCrossRefGoogle Scholar
  40. 40.
    Fraga, M. F., Esteller, M. (2002) DNA methylation: a profile of methods and applications. Biotechniques 33, 632–649.PubMedGoogle Scholar
  41. 41.
    Prohaska, S. J., Stadler, P. F., Krakauer, D. C. (2010) Innovation in gene regulation: the case of chromatin computation. J Theor Biol 265, 27–44.Google Scholar
  42. 42.
    Andersson, R., Enroth, S., Rada-Iglesias, A., Wadelius, C., Komorowski, J. (2009) Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res 19, 1732–1741.PubMedCrossRefGoogle Scholar
  43. 43.
    Nahkuri, S., Taft, R. J., Mattick, J. S. (2009) Nucleosomes are preferentially positioned at exons in somatic and sperm cells. Cell Cycle 8, 3420–3424.PubMedCrossRefGoogle Scholar
  44. 44.
    Schwartz, S., Meshorer, E., Ast, G. (2009) Chromatin organization marks exon–intron structure. Nat Struct Mol Biol 16, 990–995.PubMedCrossRefGoogle Scholar
  45. 45.
    Tilgner, H., Nikolaou, C., Althammer, S., et al. (2009) Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol 16, 996–1001.PubMedCrossRefGoogle Scholar
  46. 46.
    Apte, A., Meitei, N. S. (2010) Bioinformatics in glycomics: glycan characterization with mass spectrometric data using SimGlycan. Methods Mol Biol 600, 269–281.PubMedCrossRefGoogle Scholar
  47. 47.
    Zaia, J. (2008) Mass spectrometry and the emerging field of glycomics. Chem Biol 15.Google Scholar
  48. 48.
    Hüttenhofer, A., Brosius, J., Bachellerie, J. P. (2002) RNomics: identification and function of small, non-messenger RNAs. Curr Opin Chem Biol 6, 835–843.PubMedCrossRefGoogle Scholar
  49. 49.
    Kiemer, L., Cesareni, G. (2007) Comparative interactomics: comparing apples and pears? Trends Biotech 25, 448–454.CrossRefGoogle Scholar
  50. 50.
    Brückner, A., Polge, C., Lentze, N., Auerbach, D., Schlattner, U. (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10, 2763–2788.PubMedCrossRefGoogle Scholar
  51. 51.
    Heck, A. J. (2008) Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods 5, 927–933.PubMedCrossRefGoogle Scholar
  52. 52.
    Wong, E., Wei, C. L. (2009) ChIP’ing the mammalian genome: technical advances and insights into functional elements. Genome Med 1, 89.Google Scholar
  53. 53.
    Yoder, S. J., Enkemann, S. A. (2009) ChIP-on-Chip analysis methods for Affymetrix tiling arrays. Methods Mol Biol 523, 367–381.PubMedCrossRefGoogle Scholar
  54. 54.
    Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10, 669–680.PubMedCrossRefGoogle Scholar
  55. 55.
    Licatalosi, D., Mele, A., Fak, J. J., et al. (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469.PubMedCrossRefGoogle Scholar
  56. 56.
    Khalil, A. M., Guttman, M., Huarte, M., Garber, M., et al. (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106, 11675–11680.CrossRefGoogle Scholar
  57. 57.
    Brunel, C., Romby, P. (2000) Probing RNA structure and RNA-ligand complexes with chemical probes. Methods Enzymol 318, 3–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Mückstein, U., Tafer, H., Hackermüller, J., Bernhard, S. B., Stadler, P. F., Hofacker, I. L. (2006) Thermodynamics of RNA-RNA binding. Bioinformatics 22, 1177–1182.PubMedCrossRefGoogle Scholar
  59. 59.
    Busch, A., Richter, A., Backofen, R. (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24, 2849–2856.PubMedCrossRefGoogle Scholar
  60. 60.
    Chitsaz, H., Salari, R., Sahinalp, S., Backofen, R. (2009) A partition function algorithm for interacting nucleic acid strands. Bioinformatics 25, i365–i373.PubMedCrossRefGoogle Scholar
  61. 61.
    Huang, F. W. D., Qin, J., Reidys, C. M., Stadler, P. F. (2010) Target prediction and a statistical sampling algorithm for RNA-RNA interaction. Bioinformatics 26, 175–181.PubMedCrossRefGoogle Scholar
  62. 62.
    de Leeuw, W. C., Rauwerda, M. J., Jonker, H., Breit, T. M. (2008) Salvaging affymetrix probes after probe-level re-annotation. BMC Res Notes 1, 66.PubMedCrossRefGoogle Scholar
  63. 63.
    Pearson, H. (2006) Genetics: what is a gene? Nature 441, 398–401.PubMedCrossRefGoogle Scholar
  64. 64.
    Pennisi, E. (2007) DNA study forces rethink of what it means to be a gene. Science 316, 1556–1557.PubMedCrossRefGoogle Scholar
  65. 65.
    Gerstein, M. B., Bruce, C., Rozowsky, J. S., et al. (2007) What is a gene, post-ENCODE? History and updated definition. Genome Res 17, 669–681.PubMedCrossRefGoogle Scholar
  66. 66.
    Gingeras, T. R. (2007) Origin of phenotypes: genes and transcripts. Genome Res 17, 682–690.PubMedCrossRefGoogle Scholar
  67. 67.
    Scherrer, K., Jost, J. (2007) The gene and the genon concept: a conceptual and ­information-theoretic analysis of genetic ­storage and expression in the light of modern molecular biology. Theory Biosci 126, 65–113.PubMedCrossRefGoogle Scholar
  68. 68.
    Stadler, P. F., Prohaska, S. J., Forst, C. V., Krakauer, D. C. (2009) Defining genes: a computational framework. Theory Biosci 128, 165–170.PubMedCrossRefGoogle Scholar
  69. 69.
    Dean, A., Harris, S. E. H., Kalajzic, I., Ruan, J. (2009) A systems biology approach to the identification and analysis of transcriptional regulatory networks in osteocytes. BMC Bioinformatics 10 (Suppl 9), S5.Google Scholar
  70. 70.
    Laubenbacher, R., Hower, V., Jarrah, A., et al. (2009) A systems biology view of cancer. Biochim Biophys Acta 1796, 129–139.PubMedGoogle Scholar
  71. 71.
    Engl, H. W., Flamm, C., Kügler, P., Lu, J., Müller, S., Schuster, P. (2009) Inverse problems in systems biology. Inverse Problems 25, 123014.CrossRefGoogle Scholar
  72. 72.
    Ciliberti, S., Martin, O. C., Wagner, A. (2007) Innovation and robustness in complex regulatory gene networks. Proc Natl Acad Sci USA 104, 13591–13596.PubMedCrossRefGoogle Scholar
  73. 73.
    Missal, K., Cross, M. A., Drasdo, D. (2006) Gene network inference from incomplete expression data: transcriptional control of hematopoietic commitment. Bioinformatics 22, 731–738.PubMedCrossRefGoogle Scholar
  74. 74.
    Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H. Systems Biology in Practice. Concepts, Implementation, and Application. Weinheim, DE: Wiley, 2005.Google Scholar
  75. 75.
    Marcus, F. Bioinformatics and Systems Biology. Berlin: Springer, 2008.CrossRefGoogle Scholar
  76. 76.
    Eisen, J. A., Coyne, R. S., Wu, M., et al. (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4, e286.PubMedCrossRefGoogle Scholar
  77. 77.
    Prescott, J. D., DuBois, M. L., Prescott, D. M. (1998) Evolution of the scrambled germline gene encoding α-telomere binding protein in three hypotrichous ciliates. Chromosoma 107, 293–303.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Computer Science and Interdisciplinary Center for BioinformaticsUniversity of LeipzigLeipzigGermany

Personalised recommendations