Skip to main content

Analysis of Time Course Omics Datasets

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 719))

Abstract

Over the past 20 years, Omics technologies emerged as the consensual denomination of holistic molecular profiling. These techniques enable parallel measurements of biological -omes, or “all constituents considered collectively”, and utilize the latest advancements in transcriptomics, proteomics, metabolomics, imaging, and bioinformatics. The technological accomplishments in increasing the sensitivity and throughput of the analytical devices, the standardization of the protocols and the widespread availability of reagents made the capturing of static molecular portraits of biological systems a routine task. The next generation of time course molecular profiling already allows for extensive molecular snapshots to be taken along the trajectory of time evolution of the investigated biological systems. Such datasets provide the basis for application of the inverse scientific approach. It consists in the inference of scientific hypotheses and theories about the structure and dynamics of the investigated biological system without any a priori knowledge, solely relying on data analysis to unveil the underlying patterns. However, most temporal Omics data still contain a limited number of time points, taken over arbitrary time intervals, through measurements on biological processes shifted in time. The analysis of the resulting short and noisy time series data sets is a challenge. Traditional statistical methods for the study of static Omics datasets are of limited relevance and new methods are required. This chapter discusses such algorithms which enable the application of the inverse analysis approach to short Omics time series.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bar-Joseph, Z. (2004) Analyzing time-series gene expression data. Bioinformatics 20(16), 2493–503.

    PubMed  CAS  Google Scholar 

  2. Androulakis, I. P., Yang, E., and Almon, R. R. (2007) Analysis of time-series gene expression data: methods, challenges, and opportunities. Annu Rev Biomed Eng 9(3), 1–24.

    Google Scholar 

  3. Wang, X., Wu, M., Li, Z., and Chan, C. (2008) Short time-series microarray analysis: methods and challenges. BMC Sys Biol 2, 58–64.

    Google Scholar 

  4. Billups, S. C., Neville, M. C., Rudolph, M., Porter, W., and Schedin, P. (2009) Identifying significant temporal variation in time course microarray data without replicates. BMC Bioinformatics 10, 96.

    PubMed  Google Scholar 

  5. Sun, R., Fu, X., Guo, F., Ma, Z., Goulbourne, C., Jiang, M., Li, Y., Xie, Y., and Mao, Y. (2009) A strategy for meta-analysis of short time series microarray datasets. Front Biosci 14, 4058–70.

    PubMed  CAS  Google Scholar 

  6. Han, X., Sung, W.-K., and Feng, L. (2006) PEM: a general statistical approach for identifying differentially expressed genes in time-course cDNA microarray experiment without replicate. Ser Adv Bioinform Comp Biol 4, 123–32.

    CAS  Google Scholar 

  7. Tuscher, V. G., Tibshirani, R., and Chu, G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Nat Acad Sci USA 98(9), 5116–21.

    Google Scholar 

  8. Leek, J. T., Monsen, E., Dabney, A. R., and Storey, J. D. (2006) EDGE: extraction and analysis of differential gene expression. Bioinformatics 22(4), 507–8.

    PubMed  CAS  Google Scholar 

  9. Shedden, K., and Cooper, S. (2002) Analysis of cell-cycle gene expression in Saccharomyces cerevisiae using microarrays and multiple synchronization methods. Nucleic Acids Res. 30, 2920–29.

    PubMed  CAS  Google Scholar 

  10. Bay, S. D., Chrisman, L., Pohorille, A., and Shrager, J. (2004) Temporal aggregation bias and inference of causal regulatory networks. J Comp Biol 11(5), 971–85.

    CAS  Google Scholar 

  11. Dequeant, M.-L., Ahnert, S., Edelsbrunner, H., Fink, T. M. A., Glynn, E. F., Hattem, G., Kudlicki, A., Mileyko, Y., Morton, J., Mushegian, A. R., Pachter, L., Rowicka, M., Shiu, A., Sturmfels, B., and Pourquie, O. (2008) Comparison of pattern detection methods in microarray time series of the segmentation clock. PLoS One 3, 8–12.

    Google Scholar 

  12. Wu, F.-X., Zhang, W. J., and Kusalik, A. J. (2006) Determination of the minimum number of microarray experiments for discovery of gene expression patterns. BMC Bioinformatics 7(Suppl. 4), S4–13.

    Google Scholar 

  13. Morton, J., Pachter, L., Shiu, A., and Sturmfels, B. (2007) The cyclohedron test for finding periodic genes in time course expression studies. Stat Appl Genet Mol Biol 6, 1–10.

    Google Scholar 

  14. Wichert, S., Fokianos, K., and Strimmer, K. (2004) Identifying periodically expressed transcripts in microarray time series data. Bioinformatics 20(1), 5–20.

    PubMed  CAS  Google Scholar 

  15. Luan, Y., and Li, H. (2004) Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data. Bioinformatics 20(3), 332–9.

    PubMed  CAS  Google Scholar 

  16. Chen, J. (2005) Identification of significant periodic genes in microarray gene expression data. BMC Bioinformatics 6, 286.

    PubMed  Google Scholar 

  17. Ptitsyn, A. A., Zvonic, S., and Gimble, J. M. (2006) Permutation test for periodicity in short time series data. BMC Bioinformatics 7(Suppl. 2), S2–10.

    Google Scholar 

  18. Glynn, E. F., Chen, J., and Mushegian, A. R. (2006) Detecting periodic patterns in unevenly spaced gene expression time series using Lomb-Scargle periodograms. Bioinformatics 22(3), 310–16.

    PubMed  CAS  Google Scholar 

  19. Liew, A. W.-C., Xian, J., Wu, S., Smith, D., and Yan, H. (2007) Spectral estimation in unevenly sampled space of periodically expressed microarray time series data. BMC Bioinformatics 8, 137.

    PubMed  Google Scholar 

  20. Klevecz, R. R., Li, C. M., and Bolen, J. L. (2007) Signal processing and the design of microarray time-series experiments. Methods Mol Biol 377, 75–94.

    PubMed  CAS  Google Scholar 

  21. Hu, J., Li, H., Waterman, M. S., and Zhou, X. J. (2006) Integrative missing value estimation for microarray data. BMC Bioinformatics 7, 449.

    PubMed  Google Scholar 

  22. Jornsten, R., Ouyang, M., and Wang, H.-Y. (2007) A meta-data based method for DNA microarray imputation. BMC Bioinformatics 8, 109.

    PubMed  Google Scholar 

  23. Brock, G. N., Shaffer, J. R., Blakesley, R. E., Lotz, M. J., and Tseng, G. C. (2008) Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes. BMC Bioinformatics 9, 9–12.

    Google Scholar 

  24. Yoneya, T., and Mamitsuka, H. (2007) A hidden Markov model-based approach for identifying timing differences in gene expression under different experimental factors. Bioinformatics 23(7), 842–9.

    PubMed  CAS  Google Scholar 

  25. Telesca, D., and Inoue, L. Y. T. (2008) Bayesian hierarchical curve registration. J Am Stat Assoc 103(481), 328–39.

    CAS  Google Scholar 

  26. Fischer, B., Roth, V., and Buhmann, J. M. (2007) Time-series alignment by non-negative multiple generalized canonical correlation analysis. BMC Bioinformatics 8(Suppl. 10), S10–14.

    Google Scholar 

  27. Simon, I., Siegfried, Z., Ernst, J., and Bar-Joseph, Z. (2005) Combined static and dynamic analysis for determining the quality of time-series expression profiles. Nat Biotechnol 23(12), 1503–8.

    PubMed  CAS  Google Scholar 

  28. Filkov, V., Skiena, S., and Zhi, J. (2002) Analysis techniques for microarray time-series data. J Comput Biol 9(2), 317–30.

    PubMed  CAS  Google Scholar 

  29. Fischer, E. A., Friedman, M. A., and Markey, M. K. (2007) Empirical comparison of tests for differential expression on time-series microarray experiments. Genomics 89(4), 460–70.

    PubMed  CAS  Google Scholar 

  30. Di Camillo, B., Toffolo, G., Nair, S. K., Greenlund, L. J., and Cobelli, C. (2007) Significance analysis of microarray transcript levels in time series experiments. BMC Bioinformatics 8(Suppl. 1), S1–10.

    Google Scholar 

  31. Xu, R., and Li, X. (2003) A comparison of parametric versus permutation methods with applications to general and temporal microarray gene expression data. Bioinformatics 19(10), 1284–9.

    PubMed  CAS  Google Scholar 

  32. Tai, Y. C., and Speed, T. P. (2009) On gene ranking using replicated microarray time course data. Biometrics 65(1), 40–51.

    PubMed  CAS  Google Scholar 

  33. Nuede, M. J., Conesa, A., Westerhuis, J. A., Hoefsloot, H. C. J., Smilde, A. K., Talon, M., and Ferrer, A. (2007) Discovering gene expression patterns in time course microarray experiments by ANOVA-SCA. Bioinformatics 23(14), 1792–800.

    Google Scholar 

  34. Vinciotti, V., Liu, X., Turk, R., de Meijer, E. J., and ‘t Hoen, P. A. C. (2006) Exploiting the full power of temporal gene expression profiling through a new statistical test: application to the analysis of muscular dystrophy data. BMC Bioinformatics 7, 183.

    PubMed  Google Scholar 

  35. Xu, X. L., Olson, J. M., and Zhao, L. P. (2002) A regression-based method to identify differentially expressed genes in microarray time course studies and its application in an inducible Huntington’s disease transgenic model. Hum Mol Genet 11(17), 1977–85.

    PubMed  CAS  Google Scholar 

  36. Yu, K., Vinciotti, V., Liu, X., and ‘t Hoen, P. A. C. (2007) Bayesian median regression for temporal gene expression data. AIP Conference Proceedings 940(CompLife 2007), 60–70.

    Google Scholar 

  37. Cheng, C., Ma, X., Yan, X., Sun, F., and Li, L. M. (2006) MARD: a new method to detect differential gene expression in treatment-control time courses. Bioinformatics 22(21), 2650–7.

    PubMed  CAS  Google Scholar 

  38. Angelini, C., Cutillo, L., De Canditiis, D., Mutarelli, M., and Pensky, M. (2008) BATS: a Bayesian user-friendly software for Analyzing Time Series microarray experiments. BMC Bioinformatics 9, 415.

    PubMed  Google Scholar 

  39. Ahnert, S. E., Willbrand, K., Brown, F. C. S., and Fink, T. M. A. (2006) Unbiased pattern detection in microarray data series. Bioinformatics 22(12), 1471–6.

    PubMed  CAS  Google Scholar 

  40. Hvidsten, T. R., Laegreid, A., and Komorowski, J. (2003) Learning rule-based models of biological process from gene expression time profiles using gene ontology. Bioinformatics 19(9), 1116–23.

    PubMed  CAS  Google Scholar 

  41. Datta, S., and Datta, S. (2006) Evaluation of clustering algorithms for gene expression data. BMC Bioinformatics 7(Suppl. 4), S4–17.

    Google Scholar 

  42. Peddada, S., Harris, S., Zajd, J., and Harvey, E. (2005) ORIOGEN: order restricted inference for ordered gene expression data. Bioinformatics 21(20), 3933–4.

    PubMed  CAS  Google Scholar 

  43. Liu, X., and Mueller, H.-G. (2003) Modes and clustering for time-warped gene expression profile data. Bioinformatics 19(15), 1937–44.

    PubMed  CAS  Google Scholar 

  44. Luan, Y., and Li, H. (2003) Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics 19(4), 474–82.

    PubMed  CAS  Google Scholar 

  45. Dejean, S., Martin, P. G. P., Baccini, A., and Besse, P. (2007) Clustering time-series gene expression data using smoothing spline derivatives. EURASIP J Bioinform Syst Biol 70561.

    Google Scholar 

  46. Song, J. Z., Duan, K. M., Ware, T., and Surette, M. (2007) The wavelet-based cluster analysis for temporal gene expression data. EURASIP J Bioinform Syst Biol 39382.

    Google Scholar 

  47. Joo, Y., Booth, J. G., Namkoong, Y., and Casella, G. (2008) Model-based Bayesian clustering (MBBC). Bioinformatics 24(6), 874–5.

    PubMed  CAS  Google Scholar 

  48. Kim, J., and Kim, J. H. (2007) Difference-based clustering of short time-course microarray data with replicates. BMC Bioinformatics 8, 253–8.

    PubMed  Google Scholar 

  49. Wang, L., Montano, M., Rarick, M., and Sebastiani, P. (2008) Conditional clustering of temporal expression profiles. BMC Bioinformatics 9, 147.

    PubMed  Google Scholar 

  50. Magni, P., Ferrazzi, F., Sacchi, L., and Bellazzi, R. (2008) TimeClust: a clustering tool for gene expression time series. Bioinformatics 24(3), 430–2.

    PubMed  CAS  Google Scholar 

  51. Liu, T., Lin, N., Shi, N., and Zhang, B. (2009) Information criterion-based clustering with order-restricted candidate profiles in short time-course microarray experiments. BMC Bioinformatics 10, 146.

    PubMed  Google Scholar 

  52. Yi, S.-G., Joo, Y.-J., and Park, T. (2009) Rank-based clustering analysis for the time-course microarray data. J Bioinform Comput Biol 7(1), 75–91.

    PubMed  CAS  Google Scholar 

  53. Jonnalagadda, S., and Srinivasan, R. (2008) Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data. BMC Bioinformatics 9, 267.

    PubMed  Google Scholar 

  54. Nueda, M. J., Sebastian, P., Tarazona, S., Garcia-Garcia, F., Dopazo, J., Ferrer, A., and Conesa, A. (2009) Functional assessment of time course microarray data. BMC Bioinformatics 10(Suppl. 6), S6–9.

    Google Scholar 

  55. Horn, D., and Axel, I. (2003) Novel clustering algorithm for microarray expression data in a truncated SVD space. Bioinformatics 19(9), 1110–15.

    PubMed  CAS  Google Scholar 

  56. Kim, H. Y., Kim, M. J., Han, J. I., Kim, B. K., Lee, Y. S., Lee, Y. S., and Kim, J. H. (2009) Searching the principal genes for neural differentiation of mouse ES cells by factorizing eigengenes of clusters. BioSystems 95(1), 17–25.

    PubMed  CAS  Google Scholar 

  57. Ghosh, D. (2002) Resampling methods for variance estimation of singular value decomposition analyses from microarray experiments. Funct Integr Genomics 2(3), 92–7.

    PubMed  CAS  Google Scholar 

  58. Omberg, L., Golub, G. H., and Alter, O. (2007) A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies. Proc Natl Acad Sci USA 104(47), 18371–6.

    PubMed  CAS  Google Scholar 

  59. Frigyesi, A., Veerla, S., Lindgren, D., and Hoeglund, M. (2006) Independent component analysis reveals new and biologically significant structures in microarray data. BMC Bioinformatics 7, 290.

    PubMed  Google Scholar 

  60. Chiappetta, P., Roubaud, M. C., and Torresani, B. (2004) Blind source separation and the analysis of microarray data. J Comput Biol 11(6), 1090–109.

    PubMed  CAS  Google Scholar 

  61. Taguchi, Y.-H., and Oono, Y. (2005) Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics 21(6), 730–40.

    PubMed  CAS  Google Scholar 

  62. Wentzell, P. D., Karakach, T. K., Roy, S., Martinez, M. J., Allen, C. P., and Werner-Washburne, M. (2006) Multivariate curve resolution of time course microarray data. BMC Bioinformatics 7, 343.

    PubMed  Google Scholar 

  63. Tan, Q., Brusgaard, K., Kruse, T. A., Oakeley, E., Hemmings, B., Beck-Nielsen, H., Hansen, L., and Gaster, M. (2004) Correspondence analysis of microarray time-course data in case-control design. J Biomed Inform 37(5), 358–65.

    PubMed  CAS  Google Scholar 

  64. Zhang, L., Zhang, A., and Ramanathan, M. (2003) Fourier harmonic approach for visualizing temporal patterns of gene expression data. Proc. 2nd IEEE Bioinf. Conf., Publisher: IEEE Computer Society (Los Alamitos, CA, USA) 137–47.

    Google Scholar 

  65. Van Deun, K., Marchal, K., Heiser, W. J., Engelen, K., and Van Mechelen, I. (2007) Joint mapping of genes and conditions via multidimensional unfolding analysis. BMC Bioinformatics 8, 181.

    PubMed  Google Scholar 

  66. Liang, Y., and Kelemen, A. (2005) Temporal gene expression classification with regularised neural network. Int J Bioinform Res Appl 1(4), 399–413.

    PubMed  CAS  Google Scholar 

  67. Liang, Y., and Kelemen, A. G. (2004) Hierarchical Bayesian Neural Network for gene expression temporal patterns. Stat App Genet Mol Biol 3(1), 20.

    Google Scholar 

  68. Palermo, G., Piraino, P., and Zucht, H.-D. (2009) Performance of PLS regression coefficients in selecting variables for each response of a multivariate PLS for omics-type data. Adv Appl Bioinform Chem 2, 57–70.

    CAS  Google Scholar 

  69. Svensson, O., Kourti, T., and MacGregor, J. F. (2002) An investigation of orthogonal signal correction algorithms and their characteristics. J Chem 16(4), 176–88.

    CAS  Google Scholar 

  70. Keun, H. C., Ebbels, T. M. D., Bollard, M. E., Beckonert, O., Antti, H., Holmes, E., Lindon, J. C., and Nicholson, J. K. (2004) Geometric trajectory analysis of metabolic responses to toxicity can define treatment specific profiles. Chem Res Toxicol 17(5), 579–87.

    PubMed  CAS  Google Scholar 

  71. Bohus, E., Coen, M., Keun, H. C., Ebbels, T. M. D., Beckonert, O., Lindon, J. C., Holmes, E., Noszal, B., and Nicholson, J. K. (2008) Temporal metabonomic modeling of l-arginine-induced exocrine pancreatitis. J Proteome Res 7(10), 4435–45.

    PubMed  CAS  Google Scholar 

  72. Yap, I. K., Clayton, T. A., Tang, H., Everett, J. R., Hanton, G., Provost, J.-P., Le Net, J.-L., Charuel, C., Lindon, J. C., and Nicholson, J. K. (2006) An integrated metabonomic approach to describe temporal metabolic disregulation induced in the rat by the model hepatotoxin allyl formate. J Proteome Res 5(10), 2675–84.

    PubMed  CAS  Google Scholar 

  73. Xia, J., Psychogios, N., Young, N., and Wishart, D. S. (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37, W652–60.

    PubMed  CAS  Google Scholar 

  74. Mintz, M., Vanderver, A., Brown, K. J., Lin, J., Wang, Z., Kaneski, C., Schiffmann, R., Nagaraju, K., Hoffman, E. P., and Hathout, Y. (2008) Time series proteome profiling to study endoplasmic reticulum stress response. J Proteome Res 7(6), 2435–44.

    PubMed  CAS  Google Scholar 

  75. Vu, T. T., and Vohradsky, J. (2007) Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae. Nucleic Acids Res 35(1), 279–87.

    PubMed  CAS  Google Scholar 

  76. Wang, L., Chen, G., and Li, H. (2007) Group SCAD regression analysis for microarray time course gene expression data. Bioinformatics 23(12), 1486–94.

    PubMed  CAS  Google Scholar 

  77. Wiener, N. (1956) The theory of prediction. In E. F. Beckenbach, Ed., Modern mathematics for engineers (McGraw-Hill, New York, USA).

    Google Scholar 

  78. Granger, C. W. J. (1969) Investigating causal relationships by econometric models and cross-spectral methods. Econometrica 37, 424–38.

    Google Scholar 

  79. Geweke, J. (1984) Measures of conditional linear dependence and feedback between time series. J Am Stat Assoc 79, 907–15.

    Google Scholar 

  80. Magwene, P. M., Lizardi, P., and Kim, J. (2003) Reconstructing the temporal ordering of biological samples using microarray data. Bioinformatics 19(7), 842–50.

    PubMed  CAS  Google Scholar 

  81. Mukhopadhyay, N. D., and Chatterjee, S. (2007) Causality and pathway search in microarray time series experiment. Bioinformatics 23(4), 442–9.

    PubMed  CAS  Google Scholar 

  82. Opgen-Rhein, R., and Strimmer, K. (2007) Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinformatics 8(Suppl. 2), S2–3.

    Google Scholar 

  83. Fujita, A., Sato, J. R., Garay-Malpartida, H. M., Yamaguchi, R., Miyano, S., Sogayar, M. C., and Ferreira, C. E. (2007) Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Systems Biology 1, 39.

    PubMed  Google Scholar 

  84. Hirose, O., Yoshida, R., Imoto, S., Yamaguchi, R., Higuchi, T., Charnock-Jones, D. S., Print, C., and Miyano, S. (2008) Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics 24(7), 932–42.

    PubMed  CAS  Google Scholar 

  85. Rajaram, S. (2009) A novel meta-analysis method exploiting consistency of high-throughput experiments. Bioinformatics 25(5), 636–42.

    PubMed  CAS  Google Scholar 

  86. Butte, A. J., Bao, L., Reis, B. Y., Watkins, T. W., and Kohane, I. S. (2001) Comparing the similarity of time-series gene expression using signal processing metrics. J Biomed Inform 34(6), 396–405.

    PubMed  CAS  Google Scholar 

  87. Lindloef, A., and Lubovac, Z. (2005) Simulations of simple artificial genetic networks reveal features in the use of Relevance Networks. In Silico Biol 5(3), 239–49.

    CAS  Google Scholar 

  88. Wei, H., and Kaznessis, Y. (2005) Inferring gene regulatory relationships by combining target – target pattern recognition and regulator-specific motif examination. Biotech Bioeng 89(1), 53–77.

    CAS  Google Scholar 

  89. Soranzo, N., Bianconi, G., and Altafini, C. (2007) Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics 23(13), 1640–47.

    PubMed  CAS  Google Scholar 

  90. Yeung, L. K., Szeto, L. K., Liew, A. W.-C., and Yan, H. (2004) Dominant spectral component analysis for transcriptional regulations using microarray time-series data. Bioinformatics 20(5), 742–9.

    PubMed  CAS  Google Scholar 

  91. Kim, S. Y., Imoto, S., and Miyano, S. (2003) Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform 4(3), 228–35.

    PubMed  CAS  Google Scholar 

  92. Di Camillo, B., Sanchez-Cabo, F., Toffolo, G., Nair, S. K., Trajanoski, Z., and Cobelli, C. (2005) A quantization method based on threshold optimization for microarray short time series. BMC Bioinformatics 6(Suppl. 4), S4–11.

    Google Scholar 

  93. Chuang, C.-L., Jen, C.-H., Chen, C.-M., and Shieh, G. S. (2008) A pattern recognition approach to infer time-lagged genetic interactions. Bioinformatics 24(9), 1183–90.

    PubMed  CAS  Google Scholar 

  94. Jiang, W., Li, X., Guo, Z., Li, C., Wang, L., and Rao, S. (2006) A novel model-free approach for reconstruction of time-delayed gene regulatory networks. Sci China C Life Sci 49(2), 190–200.

    PubMed  CAS  Google Scholar 

  95. Wu, C.-C., Huang, H.-C., Juan, H.-F., and Chen, S.-T. (2004) GeneNetwork: an interactive tool for reconstruction of genetic networks using microarray data. Bioinformatics 20(18), 3691–93.

    PubMed  CAS  Google Scholar 

  96. Shaw, O. J., Harwood, C., Steggles, L. J., and Wipat, A. (2004) SARGE: a tool for creation of putative genetic networks. Bioinformatics 20(18), 3638–40.

    PubMed  CAS  Google Scholar 

  97. Ishiwata, R. R., Morioka, M. S., Ogishima, S., and Tanaka, H. (2009) BioCichlid: central dogma-based 3D visualization system of time-course microarray data on hierarchical biological network. Bioinformatics 25(4), 543–44.

    PubMed  CAS  Google Scholar 

  98. Skinner, E. J. (1994) Low-dimensional Chaos in Biological Systems. Nat Biotechnol 12, 596–600.

    CAS  Google Scholar 

  99. Peng, C. K., Buldyrev, S. V., Hausdorff, J. M., Havlin, S., Mietus, J. E., Simons, M., Stanley, H. E., and Goldberger, A. L. (1994) Non-Equilibrium dynamics as an indispensable characteristic of a healthy biological system. Integr Physiol Behavioral Sci29, 283–293.

    Google Scholar 

  100. Peng, C. K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M., and Stanley, H. E. (1992) Long-range correlations in nucleotide sequences. Nature 356, 168–170.

    PubMed  CAS  Google Scholar 

  101. Fonslet, J., Rud-Petersen, K., Krishna, S., and Jensen, M. H. (2007) Pulses and chaos: dynamical response in a simple genetic oscillator. Int J Mod Phys B 21(23 and 24), 4083–90.

    CAS  Google Scholar 

  102. Holter, N. S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J. R., and Fedoroff, N. V. (2000) Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc Natl Acad Sci USA 97(15), 8409–14.

    PubMed  CAS  Google Scholar 

  103. Rifkin, S. A., and Kim, J. (2002) Geometry of gene expression dynamics. Bioinformatics 18(9), 1176–83.

    PubMed  CAS  Google Scholar 

  104. Grigorov, M. G. (2006) Global dynamics of biological systems from time-resolved omics experiments. Bioinformatics 22(12), 1424–30.

    PubMed  CAS  Google Scholar 

  105. van den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., and van der Werf, M. J. (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7, 142–7.

    PubMed  Google Scholar 

  106. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., and Farmer, J. D. (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58, 77–94.

    Google Scholar 

  107. Ghil, M., Allen, R. M., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi, P., and Yiou, P. (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1), 3.1–3.41.

    Google Scholar 

  108. Azuaje, F., Devaux, Y., and Wagner, D. (2009) Challenges and standards in reporting diagnostic and prognostic biomarker studies. Clin Transl Sci 2(2), 156–61.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. Grigorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Grigorov, M.G. (2011). Analysis of Time Course Omics Datasets. In: Mayer, B. (eds) Bioinformatics for Omics Data. Methods in Molecular Biology, vol 719. Humana Press. https://doi.org/10.1007/978-1-61779-027-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-027-0_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-026-3

  • Online ISBN: 978-1-61779-027-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics