Advertisement

Oligosaccharide Mass Profiling (OLIMP) of Cell Wall Polysaccharides by MALDI-TOF/MS

  • Markus Günl
  • Florian Kraemer
  • Markus PaulyEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 715)

Abstract

In today’s field of plant cell wall research, insights into the structure of wall components are obtained using many different techniques, ranging from spectroscopic and microscopic to chemical and biochemical. In this chapter, we describe one method: oligosaccharide mass profiling (OLIMP). Using OLIMP, we can harness the selective power of a specific wall hydrolase together with the speed and sensitivity of mass spectrometry to provide highly reproducible structural and compositional information about the wall molecule of interest.

Key words

Mass spectrometry Matrix polysaccharides Oligosaccharides Glycosylhydrolases Xyloglucan Xylan Pectins 

Notes

Acknowledgements

The authors would like to thank Kirk Schorr (Novozymes) for providing the enzymes XEG and PME. Karen Bird, DOE-Plant Research Lab, Michigan State University, is thanked for editing the text.

References

  1. 1.
    Lerouxel, O., Choo, T. S., Seveno, M., Usadel, B., Faye, L., Lerouge, P., and Pauly, M. (2002) Rapid structural phenotyping of plant cell wall mutants by enzymatic oligosaccharide fingerprinting. Plant Physiology 130, 1754–1763.PubMedCrossRefGoogle Scholar
  2. 2.
    Günl, M., Gille, S., and Pauly, M. (2010) OLIigo Mass Profiling (OLIMP) of extracellular polysaccharides. Journal of Visualized Experiments. http://jove.com/index/details.stp?id=2046:doi: 10.3791/2046.
  3. 3.
    Obel, N., Erben, V., Schwarz, T., Kühnel, S., Fodor, A., and Pauly, M. (2009) Microanalysis of plant cell wall polysaccharides. Molecular Plant 2, 922–923.PubMedCrossRefGoogle Scholar
  4. 4.
    Mouille, G., Witucka-Wall, H., Bruyant, M. P., Loudet, O., Pelletier, S., Rihouey, C., Lerouxel, O., Lerouge, P., Höfte, H., and Pauly, M. (2006) Quantitative trait loci analysis of primary cell wall composition in Arabidopsis. Plant Physiology 141, 1035–1044.PubMedCrossRefGoogle Scholar
  5. 5.
    Ray, B., Loutelier-Bourhis, C., Lange, C., Condamine, E., Driouich, A., and Lerouge, P. (2004) Structural investigation of hemicellulosic polysaccharides from Argania spinosa: characterisation of a novel xyloglucan motif. Carbohydrate Research 339, 201–208.PubMedCrossRefGoogle Scholar
  6. 6.
    Yamagaki, T., Mitsuishi, Y., and Nakanishi, H. (1997) Structural analyses of xyloglucan heptasaccharide by the post-source decay fragment method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Bioscience Biotechnology and Biochemistry 61, 1411–1414.CrossRefGoogle Scholar
  7. 7.
    Pauly, M., Albersheim, P., Darvill, A., and York, W. S. (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. The Plant Journal 20, 629–639.PubMedCrossRefGoogle Scholar
  8. 8.
    Aboughe-Angone, S., Nguerna-Ona, E., Ghosh, P., Lerouge, P., Ishii, T., Rayb, B., and Driouich, A. (2008) Cell wall carbohydrates from fruit pulp of Argania spinosa: structural analysis of pectin and xyloglucan polysaccharides. Carbohydrate Research 343, 67–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Vanzin, G. F., Madson, M., Carpita, N. C., Raikhel, N. V., Keegstra, K., and Reiter, W. D. (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proceedings of National Academy of Sciences of the United States of America 99, 3340–3345.CrossRefGoogle Scholar
  10. 10.
    Cavalier, D. M., Lerouxel, O., Neumetzler, L., Yamauchi, K., Reinecke, A., Freshour, G., Zabotina, O. A., Hahn, M. G., Burgert, I., Pauly, M., Raikhel, N. V., and Keegstra, K. (2008) Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20, 1519–1537.PubMedCrossRefGoogle Scholar
  11. 11.
    Hilz, H., de Jong, L. E., Kabel, M. A., Schols, H. A., and Voragen, A. G. (2006) A comparison of liquid chromatography, capillary electrophoresis, and mass spectrometry methods to determine xyloglucan structures in black currants. Journal of Chromatography A 1133, 275–286.PubMedCrossRefGoogle Scholar
  12. 12.
    Pauly, M., Eberhard, S., Albersheim, P., Darvill, A., and York, W. S. (2001) Effects of the mur1 mutation on xyloglucans produced by suspension-cultured Arabidopsis thaliana cells. Planta 214, 67–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Brown, D. M., Goubet, F., Wong, V. W., Goodacre, R., Stephens, E., Dupree, P., and Turner, S. R. (2007) Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant Journal 52, 1154–1168.PubMedCrossRefGoogle Scholar
  14. 14.
    Lee, C., Zhong, R., Richardson, E A., Himmelsbach, D.S., McPhail, B.T., and Ye, Z. -H. (2007) The PARVUS gene is expressed in cells undergoing secondary wall thickening and is essential for glucuronoxylan biosynthesis. Plant and Cell Physiology 48, 1659–1672.PubMedCrossRefGoogle Scholar
  15. 15.
    Egelund, J., Obel, N., Ulvskov, P., Geshi, N., Pauly, M., Bacic, A., and Petersen, B. L. (2007) Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue. Plant Molecular Biology 64, 439–451.PubMedCrossRefGoogle Scholar
  16. 16.
    Bauer, S., Vasu, P., Persson, S., Mort, A. J., and Somerville, C. R. (2006) Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proceedings of National Academy of Sciences of the United States of America 103, 11417–11422.CrossRefGoogle Scholar
  17. 17.
    Sørensen, I., Pettolino, F. A., Wilson, S. M., Doblin, M. S., Johansen, B., Bacic, A., and Willats, W. G. T. (2008) Mixed-linkage (1 ® 3), (1 ® 4)-beta-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant Journal 54, 510–521.PubMedCrossRefGoogle Scholar
  18. 18.
    Doblin, M. S., Pettolino, F. A., Wilson, S. M., Campbell, R., Burton, R. A., Fincher, G. B., Newbigin, E., and Bacic, A. (2009) A barley cellulose synthase-like CSLH gene mediates (1,3; 1,4)-beta-D-glucan synthesis in transgenic Arabidopsis. Proceedings of National Academy of Sciences of the United States of America 106, 5996–6001.CrossRefGoogle Scholar
  19. 19.
    Cavalier, D. M., and Keegstra, K. (2006) Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexaose. Journal of Biological Chemistry 281, 34197–34207.PubMedCrossRefGoogle Scholar
  20. 20.
    Leonard, R., Pabst, M., Bondili, J. S., Chambat, G., Veit, C., Strasser, R., and Altmann, F. (2008) Identification of an Arabidopsis gene encoding a GH95 alpha1,2-fucosidase active on xyloglucan oligo- and polysaccharides. Phytochemistry 69, 1983–1988.PubMedCrossRefGoogle Scholar
  21. 21.
    Lee, C. H., O’Neill, M. A., Tsumuraya, Y., Darvill, A. G., and Ye, Z. -H. (2007) The irregular xylem9 mutant is deficient in xylan xylosyltransferase activity. Plant and Cell Physiology 48, 1624–1634.PubMedCrossRefGoogle Scholar
  22. 22.
    Iglesias, N., Abelenda, J. A., Rodino, M., Sampedro, J., Revilla, G., and Zarra, I. (2006) Apoplastic glycosidases active against xyloglucan oligosaccharides of Arabidopsis thaliana. Plant and Cell Physiology 47, 55–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Leboeuf, E., Immerzeel, P., Gibon, Y., Steup, M., and Pauly, M. (2008) High throughput functional assessment of polysaccharide-active enzymes using MALDI-TOF mass spectrometry as exemplified on plant cell wall polysaccharides. Analytical Biochemistry 373, 9–17.PubMedCrossRefGoogle Scholar
  24. 24.
    Pauly, M., Andersen, L. N., Kauppinen, S., Kofod, L. V., York, W. S., Albersheim, P., and Darvill, A. (1999) A xyloglucan-specific endo-beta-1,4-glucanase from Aspergillus aculeatus: expression cloning in yeast, purification and characterization of the recombinant enzyme. Glycobiology 9, 93–100.PubMedCrossRefGoogle Scholar
  25. 25.
    Muñoz, P., Norambuena, L., and Orellana, A. (1996) Evidence for a UDP-glucose transporter in golgi apparatus-derived vesicles from pea and its possible role in polysaccharide biosynthesis. Plant Physiology 112, 1585–1594.PubMedGoogle Scholar
  26. 26.
    Fry, S. C., York, W. S., Albersheim, P., Darvill, A., Hayashi, T., Joseleau, J. P., Kato, Y., Pãrez Lorences, E., Maclachlan, G. A., McNeil, M., Mort, A. J., Grant Reid, J. S., Seitz, H. U., Selvendran, R. R., Voragen, A.G. J., and White, A. R. (1993) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiologia Plantarum 89, 1–3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Energy Biosciences InstituteUniversity of CaliforniaBerkeleyUSA

Personalised recommendations