Advertisement

Computerized Molecular Modeling of Carbohydrates

  • Alfred D. French
  • Glenn P. Johnson
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 715)

Abstract

Computerized molecular modeling continues to increase in capability and applicability to carbohydrates. This chapter covers nomenclature and conformational aspects of carbohydrates, perhaps of greater use to carbohydrate-inexperienced computational chemists. Its comments on various methods and studies might be of more use to computation-inexperienced carbohydrate chemists. New work on intrinsic variability of glucose, an overall theme, is described.

Key words

Carbohydrate Disaccharide Conformation Puckering Modeling Quantum mechanics Molecular mechanics 

References

  1. 1.
    Kurihara, Y. and Ueda, K. (2006) An investigation of the pyranose ring interconversion path of α-l-idose calculated using density functional theory. Carbohydr Res 341, 2565–2574.PubMedCrossRefGoogle Scholar
  2. 2.
    Steiner, T. and Saenger, W. (1998) Closure of the cavity in permethylated cyclodextrins through glucose inversion, flipping, and kinking. Angew Chem Int Ed 37, 3404–3407.CrossRefGoogle Scholar
  3. 3.
    Añibarro, M., Gessler, K., Usón, I., Sheldrick, G. M., Harata, K., Hirayama, K., Abe, Y. and Saenger, W. (2001) Effect of peracylation of β-cyclodextrin on the molecular structure and on the formation of inclusion complexes: an X-ray study. J Am Chem Soc 123, 11854–11862.PubMedCrossRefGoogle Scholar
  4. 4.
    Gould, I. R., Bettley, H. A.-A. and Bryce, R. A. (2007) Correlated ab initio quantum chemical calculations of di- and trisaccharide conformations. J Comput Chem 28, 1965–1973.PubMedCrossRefGoogle Scholar
  5. 5.
    Barrows, S. E., Dulles, F. J., Cramer, C. J., French, A. D. and Truhlar, D. G. (1995) Relative stability of alternative chair forms and hydroxy-methyl conformations of β-glucopyranose. Carbohydr Res 276, 219–251.CrossRefGoogle Scholar
  6. 6.
    Grindley, T. B. (2008) Structure and conformation of carbohydrates. In: Fraser-Reid, B. O., Tatsuta, K. and Thiem, J. eds., Glycosciences. Springer, Berlin, pp. 3–55.CrossRefGoogle Scholar
  7. 7.
    McNaught, A. D. (1996) Nomenclature of carbohydrates (IUPAC Recommendations 1996). Pure Appl Chem 68, 1919–2008. http://www.chem.qmul.ac.uk/iupac/2carb/00n01.html#00.
  8. 8.
    French, A. D. and Dowd, M. K. (1994) Analysis of the ring-form tautomers of psicose with MM3 (92). J Comput Chem 15, 561–570.CrossRefGoogle Scholar
  9. 9.
    Boeyens, J.C.A. (1978) The conformation of six-membered rings. J Cryst Mol Struct 8, 317–320.CrossRefGoogle Scholar
  10. 10.
    Cremer, D. and Pople, J. A. (1975) A general definition of ring puckering coordinates. J Am Chem Soc 97, 1354–1358.CrossRefGoogle Scholar
  11. 11.
    Altona, C. and Sundaralingam, M. (1972) Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J Am Chem Soc 94, 8205–8212.PubMedCrossRefGoogle Scholar
  12. 12.
    Haasnoot, C. A. G. (1992) The conformation of six-membered rings described by puckering coordinates derived from endocyclic torsion angles. J Am Chem Soc 114, 882–887.CrossRefGoogle Scholar
  13. 13.
    Zotov, A. Y., Palyulin, V. A. and Zefirov, N. S. (1997) RICON – the computer program for the quantitative investigations of cyclic organic molecule conformations. J Chem Inf Comput Sci 37, 766–773.CrossRefGoogle Scholar
  14. 14.
    Geremia, S., Vicentini, L. and Calligaris, M. (1998) Stereochemistry of ruthenium bis-chelate disulfoxide complexes. A molecular mechanics investigation. Inorg Chem 37, 4094–4103.PubMedCrossRefGoogle Scholar
  15. 15.
    Bérces, A., Whitfield, D. M. and Nukada, T. (2001) Quantitative description of six-­membered ring conformations following the IUPAC conformational nomenclature. Tetrahedron 57, 477–491.CrossRefGoogle Scholar
  16. 16.
    Joshi, N. V. and Rao, V. S. R. (1979) Flexibility of the pyranose ring in α- and β-d-glucoses. Biopolymers 18, 2993–3004.CrossRefGoogle Scholar
  17. 17.
    Hill, D. and Reilly, P. J. (2007) Puckering coordinates of monocyclic rings by triangular decomposition. J Chem Inf Model 47, 1031–1035.PubMedCrossRefGoogle Scholar
  18. 18.
    French, A. D. and Johnson, G. P. (2007) Linkage and pyranosyl ring twisting in cyclodextrins. Carbohydr Res 342, 1223–1237.PubMedCrossRefGoogle Scholar
  19. 19.
    Bader, R. F. W. (1990) Atoms in Molecules – A Quantum Theory. Oxford University Press, Oxford.Google Scholar
  20. 20.
    Csonka, G. I., Kolossváry, I., Császár, P., Éliás, K. and Csizmadia, I. G. (1997) The conformational space of selected aldo-pyrano-hexoses J Mol Struct: THEOCHEM 395–396, 29–40.CrossRefGoogle Scholar
  21. 21.
    Klein, R. A. (2002) Electron density topological analysis of hydrogen bonding in glucopyranose and hydrated glucopyranose. J Am Chem Soc 124, 13931–19937.PubMedCrossRefGoogle Scholar
  22. 22.
    Klein, R. A. (2006) Lack of intramolecular hydrogen bonding in glucopyranose: vicinal hydroxyl groups exhibit negative cooperativity. Chem Phys Lett 433, 165–169.CrossRefGoogle Scholar
  23. 23.
    Koch, U. and Popelier, P. (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99, 9747–9754.CrossRefGoogle Scholar
  24. 24.
    Schrodinger, Portland, Oregon. http://www.schrodinger.com.
  25. 25.
    Çarçabal, P., Jockusch, R. A., Hunig, I., Snoek, L. C., Kroemer, R. T., Davis, B. G., Gamblin, D. P., Compagnon, I., Oomens, J. and Simons, J. P. (2005) Hydrogen bonding and cooperativity in isolated and hydrated sugars: mannose, galactose, glucose, and lactose. J Am Chem Soc 127, 11414–11425.PubMedCrossRefGoogle Scholar
  26. 26.
    Allinger, N. L., Yuh, Y. H. and Lii, J.-H. (1989) Molecular mechanics. The MM3 force field for hydrocarbons. 1. J Am Chem Soc 111, 8551–8567.CrossRefGoogle Scholar
  27. 27.
    Allen, F. H. (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B: Struct Sci 58, 380–388.CrossRefGoogle Scholar
  28. 28.
    Naidoo, K. J. and Brady, J. W. (1997) The application of simulated annealing to the conformational analysis of disaccharides. Chem Phys 224, 263–273.CrossRefGoogle Scholar
  29. 29.
    Johnson, G. P., Petersen, L., French, A. D. and Reilly, P. J. (2009) Twisting of glycosidic bonds by hydrolases. Carbohydr Res 344, 2157–2166.PubMedCrossRefGoogle Scholar
  30. 30.
    Mohamadi, F., Richards, N. G. J., Guida, W. C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrikson, T. and Still, W. C. (1990) Macromodel – an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11, 440–467.CrossRefGoogle Scholar
  31. 31.
    Kaminski, G. A., Friesner, R. A., Tirado-Rives, J. and Jorgensen, W. J. (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105, 6474–6487.CrossRefGoogle Scholar
  32. 32.
    Shen, T., Langan, P., French, A. D., Johnson, G. P. and Gnanakaran, S. (2009) ­Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence. J Amer Chem Soc 131, 14786–14794.PubMedCrossRefGoogle Scholar
  33. 33.
    Campen, R. K., Verde, A. V. and Kubicki, J. D. (2007) Influence of glycosidic linkage neighbors on disaccharide conformation in vacuum. J Phys Chem B 111, 13775–13785.PubMedCrossRefGoogle Scholar
  34. 34.
    Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., Jr. and Weiner, P. (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106, 765–784.CrossRefGoogle Scholar
  35. 35.
    Woods, R. J., Dwek, R. A., Edge, C. J. and Fraser-Reid, B. (1995) Molecular mechanical and molecular dynamic simulations of glycoproteins and oligosaccharides. 1. GLYCAM_93 parameter development. J Phys Chem 99, 3832–3846.CrossRefGoogle Scholar
  36. 36.
    Ferretti, V., Bertolasi, V. and Gilli, G. (1984) Structure of 6-kestose monohydrate, C18H31O16.H2O. Acta Crystallogr C 40, 531–535.CrossRefGoogle Scholar
  37. 37.
    Jeffrey, G. A. (1997) Introduction to Hydrogen Bonding. Oxford University Press, New York, p. 12.Google Scholar
  38. 38.
    Parthasarathi, R., Elango, M., Subramanian, V. and Sathyamurthy, N. (2009) Structure and stability of water chains (H2O)n, n = 5–20. J Phys Chem A 113, 3744–3749.PubMedCrossRefGoogle Scholar
  39. 39.
    Grabowski, S. J. (2006) Hydrogen Bonding – New Insights. Springer, Dordrecht, The Netherlands, 519pp.CrossRefGoogle Scholar
  40. 40.
    Yoneda, Y., Mereiter, K., Jaeger, C., Brecker, L., Kosma, P., Rosenau, T. and French, A. (2008) van der Waals versus hydrogen-bonding forces in a crystalline analog of cellotetraose: ­cyclohexyl 4′-o-cyclohexyl β-d-cellobioside cyclohexane solvate. J Am Chem Soc 130, 16678–16690.PubMedCrossRefGoogle Scholar
  41. 41.
    Lii, J.-H., Chen, K.-H., Johnson, G. P., French, A. D. and Allinger, N. L. (2005) The external-anomeric torsional effect. Carbohydr Res 340, 853–862.PubMedCrossRefGoogle Scholar
  42. 42.
    Jeffrey, G. A., Pople, J. A. and Radom, L. (1972) The application of ab initio molecular orbital theory to the anomeric effect. A comparison of theoretical predictions and experimental data on conformations and bond lengths in some pyranoses and methyl pyranosides. Carbohydr Res 25, 117–131.CrossRefGoogle Scholar
  43. 43.
    Jeffrey, G. A., Pople, J. A. and Radom, L. (1974) The application of ab initio molecular orbital theory to structural moieties of carbohydrates. Carbohydr Res 38, 81–95.CrossRefGoogle Scholar
  44. 44.
    Jaradat, D. M. M., Mebs, S., Chęcińska, L. and Luger, P. (2007) Experimental charge density of sucrose at 20 K: bond topological, atomic, and intermolecular quantitative properties. Carbohydr Res 342, 1480–1489.PubMedCrossRefGoogle Scholar
  45. 45.
    Tvaroška, I. and Bleha, T. (1979) Lone pair interactions in dimethoxymethane and anomeric effect. Can J Chem 57, 424–435.CrossRefGoogle Scholar
  46. 46.
    Allinger, N. L., Schmitz, L. R., Motoc, I., Bender, C. and Labanowski, J. K. (1992) Heats of formation of organic molecules. 2. The basis for calculations using either ab initio or molecular mechanics methods. Alcohols and ethers. J Am Chem Soc 114, 2880–2883.CrossRefGoogle Scholar
  47. 47.
    French, A. D., Kelterer, A.-M., Johnson, G. P. and Dowd, M. K. (2000) B3LYP/6-31G*, RHF/6-31G* and MM3 heats of formation of disaccharide analogs. J Mol Struct 556, 303–313.CrossRefGoogle Scholar
  48. 48.
    Takahashia, O., Yamasakia, K., Kohnob, Y., Uedab, K., Suezawac, H. and Nishio, M. (2009) The origin of the generalized anomeric effect: possibility of CH/n and CH/π hydrogen bonds. Carbohydr Res 344, 1225–1229.CrossRefGoogle Scholar
  49. 49.
    Perdew, J. P., Ruzsinszky, A., Constantin, L. A., Sun, J. and Csonka, G. I. (2009) Some fundamental issues in ground-state density functional theory: a guide for the perplexed. J Chem Theory Comput 5, 902–908.CrossRefGoogle Scholar
  50. 50.
    Csonka, G. I., French, A. D., Johnson, G. P. and Stortz, C. A. (2009) Evaluation of density functionals and basis sets for carbohydrates. J Chem Theory Comput 5, 679–692.CrossRefGoogle Scholar
  51. 51.
    French, A. D. and Johnson, G. P. (2004) Advanced conformational energy surfaces for cellobiose. Cellulose 11, 449–462.CrossRefGoogle Scholar
  52. 52.
    Strati, G. L., Willett, J. L. and Momany, F. A. (2002) Ab initio computational study of β-cellobiose conformers using B3LYP/6-311++G**. Carbohydr Res 337, 1851–1859.PubMedCrossRefGoogle Scholar
  53. 53.
    Cocinero, E. J., Gamblin, D. P., Davis, B. G. and Simons, J. P. (2009) The building blocks of cellulose: the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes. J Am Chem Soc 131, 11117–11123.PubMedCrossRefGoogle Scholar
  54. 54.
    Biarnés, X., Ardèvol, A., Planas, A., Rovira, C., Laio, A. and Parrinello, M. (2007) The conformational free energy landscape of β-d-glucopyranose. Implications for substrate preactivation in β-glucoside hydrolases. J Am Chem Soc 129, 10686–10693.PubMedCrossRefGoogle Scholar
  55. 55.
    French, A. D. and Johnson, G. P. (2006) Quantum mechanics studies of cellobiose conformations. Can J Chem 84, 603–612.CrossRefGoogle Scholar
  56. 56.
    Lii, J.-H., Chen, K.-H. and Allinger, N. L. (2003) Alcohols, ethers, carbohydrates, and related compounds. IV. Carbohydrates. J Comput Chem 24, 1504–1513.PubMedCrossRefGoogle Scholar
  57. 57.
    Kirschner, K. N., Yongye, A. B., Tschampel, S. M., González-Outeriño, J., Daniels, C. R., Foley, B. L. and Woods, R. J. (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29, 622–655.PubMedCrossRefGoogle Scholar
  58. 58.
    Tschampel, S. M., Kennerty, M. R. and Woods, R. J. (2007) TIP5P-consistent treatment of electrostatics for biomolecular simulations. J Chem Theory Comput 3, 1721–1733.CrossRefGoogle Scholar
  59. 59.
    Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. and Karplus, M. (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4, 187–217.CrossRefGoogle Scholar
  60. 60.
    Ha, S. N., Giammona, A., Field, M. and Brady, J. W. (1988) A revised potential-energy surface for molecular mechanics studies of carbohydrates. Carbohydr Res 180, 207–221.PubMedCrossRefGoogle Scholar
  61. 61.
    Kuttel, M., Brady, J. W. and Naidoo, K. J. (2002) Carbohydrate solution simulations: producing a force field with experimentally consistent primary alcohol rotational frequencies and populations. J Comput Chem 23, 1236–1243.PubMedCrossRefGoogle Scholar
  62. 62.
    Guvench, O., Greene, S. N., Kamath, G., Brady, J. W., Venable, R. M., Pastor, R. W. and Mackerell, Jr., A. D. (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29, 2543–2564.PubMedCrossRefGoogle Scholar
  63. 63.
    Hatcher, E. R., Guvench, O. and MacKerell, Jr., A. D. (2009) CHARMM additive all-atom force field for acyclic polyalcohols, acyclic carbohydrates, and inositol. J Chem Theory Comput 5, 1315–1327.PubMedCrossRefGoogle Scholar
  64. 64.
    Oostenbrink, C., Soares, T. A., van der Vegt, N. F. A. and van Gusteren, W. F. (2005) Validation of the 53A6 GROMOS force field. Eur Biophys J 34, 273–284.PubMedCrossRefGoogle Scholar
  65. 65.
    Stortz, C. A., Johnson, G. P., French, A. D. and Csonka, G. I. (2009) Comparison of different force fields for the study of disaccharides. Carbohydr Res 344, 2217–2228.PubMedCrossRefGoogle Scholar
  66. 66.
    Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. and Klein, M. L. (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79, 926–935.CrossRefGoogle Scholar
  67. 67.
    DeMarco, M. L. and Woods, R. J. (2008) Structural glycobiology: a game of snakes and ladders. Glycobiology 18, 426–440.PubMedCrossRefGoogle Scholar
  68. 68.
    Krupička, M. and Tvaroška, I. (2009) Hybrid quantum mechanical/molecular mechanical investigation of the β-1,4-galactosyltransferase-I mechanism. J Phys Chem B 113, (32), 11314–11319.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang, Y., Luo, M. and Schramm, V. L. (2009) Transition states of Plasmodium falciparum and human orotate phosphoribosyltransferases. J Am Chem Soc 131, 4685–4694.PubMedCrossRefGoogle Scholar
  70. 70.
    French, A. D., Kelterer, A.-M., Cramer, C. J., Johnson, G. P. and Dowd, M. K. (2000) A QM/MM analysis of the conformations of crystalline sucrose moieties. Carbohydr Res 326, 305–322.PubMedCrossRefGoogle Scholar
  71. 71.
    Zugenmaier, P. (2008) Crystalline Cellulose and Derivatives. Characterization and Structrures. Springer, Berlin, pp. 8 and 38.Google Scholar
  72. 72.
    Matthews, J. F., Skopec, C. E., Mason, P. E., Zuccato, P., Torget, R. W., Sugiyama, J., Himmel, M. E. and Brady, J. W. (2006). Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341, 138–152.PubMedCrossRefGoogle Scholar
  73. 73.
    Yui, T. and Hayashi, S. (2009) Structural stability of the solvated cellulose IIII crystal models: a molecular dynamics study. Cellulose 16, 151–165.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alfred D. French
    • 1
  • Glenn P. Johnson
    • 1
  1. 1.U.S. Department of AgricultureSouthern Regional Research CenterNew OrleansUSA

Personalised recommendations