Characterization of the Plant Cell Wall Proteome Using High-Throughput Screens

  • Sang-Jik Lee
  • Jocelyn K. C. RoseEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 715)


Plant cell wall proteins play essential roles in many important biological processes, and yet there is still not a comprehensive catalogue of the cell wall proteome, or “secretome”. Here, we describe three procedures, including a yeast secretion trap (YST), Agrobacterium-mediated transient expression using a necrosis-inducing protein (NIP) and protein localization assay using a fluorescent protein, to identify and confirm the localization of cell wall proteins. The approaches are orthogonal and collectively provide a powerful suite of approaches to complement more commonly used strategies to isolate plant cell wall-associated proteins.

Key words

Plant cell wall protein Secreted protein Secretome, Yeast secretion trap Necrosis-inducing protein Agroinfiltration Confocal fluorescence Extracellular matrix 



Research in this area was supported by grants from the NSF Plant Genome Program (DBI-0606595), the New York State Office of Science, Technology and Academic Research (NYSTAR) and Cornell Center for a Sustainable Future (CCSF).


  1. 1.
    Lee, S.-J., Saravanan, R. S., Damasceno, C. M. B., Yamane, H., Kim, B. -D. and Rose, J. K. C. (2004) Digging deeper into the plant cell wall proteome. Plant Physiol Biochem 42, 979–988.PubMedCrossRefGoogle Scholar
  2. 2.
    Jamet, E., Albenne, C., Boudart, G. Irshad, M., Canut H., and Pont-Lezica., R. (2008) Recent advances in plant cell wall proteomics. Proteomics 8, 893–908.PubMedCrossRefGoogle Scholar
  3. 3.
    Rose, J. K. C., Bashir, S., Giovannoni, J. J., Jahn, M. M., and Saravanan, R. S. (2004) Tackling the plant proteome: practical approaches, hurdles, and experimental tools. Plant J 39, 715–733.PubMedCrossRefGoogle Scholar
  4. 4.
    Nickel, W. (2005) Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6, 607–614.PubMedCrossRefGoogle Scholar
  5. 5.
    Nombela, C., Gil, C., and Chaffin, W. L. (2006) Non-conventional protein secretion in yeast. Trends Microbiol 14, 15–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee, S. -J., Kim, B. -D., and Rose, J. K. C. (2006) Identification of eukaryotic secreted and cell surface proteins using the yeast secretion trap (YST) screen. Nat Protoc 1, 2439–2447.PubMedCrossRefGoogle Scholar
  7. 7.
    Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1987) (eds.) Current Protocols in Molecular Biology, Wiley, New York.Google Scholar
  8. 8.
    Miller, E. M. and Nickoloff, J. A. (1995) Escherichia coli electrotransformation, in Methods in Molecular Biology 47, Nickoloff, J. A., ed., Humana, Totowa, NJ, 105.Google Scholar
  9. 9.
    Koncz, C. and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204, 383–396.CrossRefGoogle Scholar
  10. 10.
    Koncz, C., Kreuzaler, F., Kalman, Z., and Schell, J. (1984) A simple method to transfer, integrate and study expression of foreign genes, such as chicken ovalbumin and α-actin in plant tumors. EMBO J 3, 1029–1037.PubMedGoogle Scholar
  11. 11.
    Bendahmane, A., Querci, M., Kanyuka, K., and Baulcombe, D. C. (2000) Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J 21, 73–81.PubMedCrossRefGoogle Scholar
  12. 12.
    Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340, 783–795.PubMedCrossRefGoogle Scholar
  13. 13.
    Qutob, D., Kamoun, S., and Gijzen, M. (2002) Expression of a Phytophthora sojae necrosis inducing protein occurs during transition from biotrophy to necrotrophy. Plant J 32, 361–373.PubMedCrossRefGoogle Scholar
  14. 14.
    Yamane, H., Lee, S. -J., Kim, B. -D., Tao, R., and Rose, J. K. C. (2005) A coupled yeast signal sequence trap and transient plant expression strategy to identify and confirm genes encoding extracellular proteins from peach pistils. J Exp Bot 56, 2229–2238.PubMedCrossRefGoogle Scholar
  15. 15.
    Wesley, V. S., Helliwell, C., Smith, N. A., Wang, M. B., Rouse, D., Liu, Q., Gooding, P.S., Singh, S.R., Abbott, D., Stoutjesdijk, A., Robinson, S.P., Gleave, A. P., Green, A. G., and Waterhouse, P. M. (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27, 581–590.PubMedCrossRefGoogle Scholar
  16. 16.
    Gleave, A. P. (1992) A versatile binary vector system with a T-DNA organizational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20, 1203–1207.PubMedCrossRefGoogle Scholar
  17. 17.
    Catalá, C., Rose, J. K. C., York, W. S., Albersheim, P., Darvill, A. G., and Bennett, A. B. (2001) Characterization of a tomato xyloglucan endotransglycosylase gene that is down-regulated by auxin in etiolated hypocotyls. Plant Physiol 127, 1180–1192.PubMedCrossRefGoogle Scholar
  18. 18.
    Qiu, W., Park, J. -W., and Scholthof, H.B. (2002) Tombusvirus P19-mediated suppression of virus-induced gene silencing is ­controlled by genetic and dosage features that influence pathogenicity. Mol Plant Microbe Interact 15, 269–280.PubMedCrossRefGoogle Scholar
  19. 19.
    Qu, F. and Morris, T. J. (2002) Efficient infection of Nicotiana benthamiana by Tomato bushy stunt virus is facilitated by the coat protein and maintained by p19 through suppression of gene silencing. Mol Plant-Microbe Interact 15, 193–202.PubMedCrossRefGoogle Scholar
  20. 20.
    Silhavy, D., Molnár, A., Lucioli, A., Szittya, G., Hornyik, C., Tavazza, M and Burgyán, J. (2002) A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J 21, 3070–3080.PubMedCrossRefGoogle Scholar
  21. 21.
    Voinnet, O., Rivas, S., Mestre, P., and Baulcombe, D. C. (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33, 949–956.PubMedCrossRefGoogle Scholar
  22. 22.
    Davis, S. J. and Vierstra, R. D. (1998) Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol Biol 36, 521–528.PubMedCrossRefGoogle Scholar
  23. 23.
    Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N., Palmer, A. E., and Tsien, R. Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22, 1567–1572.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Plant BiologyCornell UniversityIthacaUSA

Personalised recommendations