New Insights into the Control of Cell Growth

  • Claudia Blaukopf
  • Matthäus Z. Krol
  • Georg J. Seifert
Part of the Methods in Molecular Biology book series (MIMB, volume 715)


Undoubtedly, the function of the plant cell wall in the control of cell growth far exceeds its mechanical role. The plant’s monitoring of cell wall function and integrity comprises a central checkpoint to integrate cues for survival and division, expansion and differentiation, as well as fluctuations in the biotic and abiotic environment (Somerville et al., Science 306:2206–2211, 2004). With their biochemical nature yet unknown, the identification of molecular constituents of cell wall performance, and integrity control initially depends on a combination of genetic and physiological approaches.

Key words

Cell wall integrity control Forward genetics Map based cloning Programmed cell death Yariv Arabinogalactan proteins 



We gratefully acknowledge the provision of immunoprobes from Paul Knox and Michael Hahn and sos5 seeds from Jian-Zhang Zhu. We thank Markus Blaukopf for assisting with the preparation of β-Yariv reagent. This work was supported by the Austrian Science foundation FWF grant P19788.


  1. 1.
    Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Paredez, A., Persson, S., Raab, T., Vorwerk, S., and Youngs, H. (2004) Toward a systems approach to understanding plant cell walls. Science 306, 2206–2211.PubMedCrossRefGoogle Scholar
  2. 2.
    Ellis, C., Karafyllidis, I., Wasternack, C., and Turner, J. G. (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14, 1557–1566.PubMedCrossRefGoogle Scholar
  3. 3.
    Reiter, W. D., Chapple, C., and Somerville, C. R. (1997) Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J 12, 335–345.PubMedCrossRefGoogle Scholar
  4. 4.
    Li, Y., Smith, C., Corke, F., Zheng, L., Merali, Z., Ryden, P., Derbyshire, P., Waldron, K., and Bevan, M. W. (2007) Signaling from an altered cell wall to the nucleus mediates sugar-­responsive growth and development in Arabidopsis thaliana. Plant Cell 19, 2500–2515.PubMedCrossRefGoogle Scholar
  5. 5.
    Xu, S. L., Rahman, A., Baskin, T. I., and Kieber, J. J. (2008) Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20, 3065–3079.PubMedCrossRefGoogle Scholar
  6. 6.
    Shi, H., Kim, Y., Guo, Y., Stevenson, B., and Zhu, J. K. (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15, 19–32.PubMedCrossRefGoogle Scholar
  7. 7.
    Hématy, K., Sado, P. E., Van Tuinen, A., Rochange, S., Desnos, T., Balzergue, S., Pelletier, S., Renou, J. P., and Höfte, H. (2007) A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol 17, 922–931.PubMedCrossRefGoogle Scholar
  8. 8.
    Desprez, T., Vernhettes, S., Fagard, M., Refregier, G., Desnos, T., Aletti, E., Py, N., Pelletier, S., and Höfte, H. (2002) Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol 128, 482–490.PubMedCrossRefGoogle Scholar
  9. 9.
    Scheible, W. R., Eshed, R., Richmond, T., Delmer, D., and Somerville, C. (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone ­herbicides in Arabidopsis Ixr1 mutants. Proc Natl Acad Sci U S A 98, 10079–10084.PubMedCrossRefGoogle Scholar
  10. 10.
    Scheible, W. R., Fry, B., Kochevenko, A., Schindelasch, D., Zimmerli, L., Somerville, S., Loria, R., and Somerville, C. R. (2003) An Arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species. Plant Cell 15, 1781–1794.PubMedCrossRefGoogle Scholar
  11. 11.
    Gu, Y., Deng, Z., Paredez, A. R., DeBolt, S., Wang, Z. Y., and Somerville, C. (2008) Prefoldin 6 is required for normal microtubule dynamics and organization in Arabidopsis. Proc Natl Acad Sci USA 105, 18064–18069.PubMedCrossRefGoogle Scholar
  12. 12.
    Paredez, A. R., Persson, S., Ehrhardt, D. W., and Somerville, C. R. (2008) Genetic ­evidence that cellulose synthase activity influences microtubule cortical array organization. Plant Physiol 147, 1723–1734.PubMedCrossRefGoogle Scholar
  13. 13.
    Seifert, G. J., and Roberts, K. (2007) The biology of arabinogalactan-proteins. Annu Rev Plant Biol 58, 137–161.PubMedCrossRefGoogle Scholar
  14. 14.
    Baskin, T. I., Betzner, A. S., Hoggart, R., Cork, A., and Williamson, R. E. (1992) Root morphology mutants in Arabidopsis thaliana. Aust J Plant Physiol 19, 427–437.CrossRefGoogle Scholar
  15. 15.
    Seifert, G. J., Barber, C., Wells, B., Dolan, L., and Roberts, K. (2002) Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-d-galactose into cell wall polymers. Curr Biol 12, 1840–1845.PubMedCrossRefGoogle Scholar
  16. 16.
    Willats, W. G., and Knox, J. P. (1996) A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of β-glucosyl Yariv reagent with seedlings of Arabidopsis thaliana. Plant J 9, 919–925.PubMedCrossRefGoogle Scholar
  17. 17.
    Guan, Y., and Nothnagel, E. A. (2004) Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures. Plant Physiol 135, 1346–1366.PubMedCrossRefGoogle Scholar
  18. 18.
    Gao, M., and Showalter, A. M. (1999) Yariv reagent treatment induces programmed cell death in Arabidopsis cell cultures and ­implicates arabinogalactan protein involvement. Plant J 19, 321–331.PubMedCrossRefGoogle Scholar
  19. 19.
    Edwards, K., Johnstone, C., and Thompson, C. (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19, 1349.PubMedCrossRefGoogle Scholar
  20. 20.
    Bell, C. J., and Ecker, J. R. (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19, 137–144.PubMedCrossRefGoogle Scholar
  21. 21.
    Smallwood, M., Yates, E. A., Willats, W. G., Martin, H., and Knox, J. P. (1996) Immunochemical comparison of membrane associated and secreted arabinogalactan-­proteins in rice and carrot. Planta 198, 452–459.CrossRefGoogle Scholar
  22. 22.
    McCartney, L., Steele-King, C. G., Jordan, E., and Knox, J. P. (2003) Cell wall pectic (1→4)-β-d-galactan marks the acceleration of cell elongation in the Arabidopsis seedling root meristem. Plant J 33, 447–454.PubMedCrossRefGoogle Scholar
  23. 23.
    Freshour, G., Clay, R. P., Fuller, M. S., Albersheim, P., Darvill, A. G., and Hahn, M. G. (1996) Developmental and tissue-specific structural alterations of the cell-wall polysaccharides of Arabidopsis thaliana roots. Plant Physiol 110, 1413–1429.PubMedGoogle Scholar
  24. 24.
    Basile, D. V., and Ganjian, I. (2004) Beta-d-glucosyl and alpha-d-galactosyl Yariv reagents: syntheses from p-nitrophenyl-d-glycosides by transfer reduction using ammonium formate. J Agric Food Chem 52, 7453–7456.PubMedCrossRefGoogle Scholar
  25. 25.
    Lister, C., and Dean, C. (1993) Recombinant inbred lines for mapping Rflp and phenotypic markers in Arabidopsis thaliana. Plant J 4, 745–750.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Claudia Blaukopf
    • 1
  • Matthäus Z. Krol
    • 1
    • 2
  • Georg J. Seifert
    • 1
  1. 1.Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Applied Life SciencesViennaAustria
  2. 2.University of Applied SciencesWiener NeustadtAustria

Personalised recommendations