Structural Proteins of the Primary Cell Wall: Extraction, Purification, and Analysis

  • Derek T. A. LamportEmail author
  • Li Tan
  • Marcia J. Kieliszewski
Part of the Methods in Molecular Biology book series (MIMB, volume 715)


Structural proteins of the primary cell wall present unusual but interesting problems for structural biologists in particular and plant biologists in general. As structure is the key to function; then the biochemical isolation of these glycoproteins for further study is paramount. Here, we detail the “classical” method for isolating soluble extensin monomers by elution of monomeric precursors to network extensin from tissue cultures. We also outline an additional approach involving genetic engineering that can potentially yield the complete genomic range of extensins and other hydroxyproline-rich glycoprotein (HRGPs) currently underutilized for biotechnology.

Key words

Extensin Primary cell wall HRGPs AGPs Cultured cells 


  1. 1.
    Lamport, D. T. A., and Northcote, D. H. (1960) Hydroxyproline in primary cell walls of higher plants. Nature 188, 665–666.CrossRefGoogle Scholar
  2. 2.
    Kerr, T., and Bailey, I. W. (1934) The cambium and its derivative tissues. X Structure, optical properties and chemical composition of the so-called middle lamella. J Arnold Arbor 15, 327–349.Google Scholar
  3. 3.
    Mort, A. J., and Lamport, D. T. A. (1977) Anhydrous hydrogen fluoride deglycosylates glycoproteins. Anal Biochem 82, 289–309.PubMedCrossRefGoogle Scholar
  4. 4.
    Lamport, D. T. A. (1965) The protein component of primary cell walls. Adv Bot Res 2, 151–218.CrossRefGoogle Scholar
  5. 5.
    Smith, J. J., Muldoon, E. P., Willard, J. J., and Lamport, D. T. A. (1986) Tomato extensin precursors P1 and P2 are highly periodic structures. Phytochemistry 25, 1021–1030.CrossRefGoogle Scholar
  6. 6.
    Lamport, D. T. A., Katona, L., and Roerig, S. (1973) Galactosyl serine in extensin. Biochem J 133, 125–131.PubMedGoogle Scholar
  7. 7.
    Epstein, L., and Lamport, D. T. A. (1984) An intracellular linkage involving isodityrosine in extensin. Phytochemistry 23, 1241–1246.CrossRefGoogle Scholar
  8. 8.
    Lamport, D. T. A., Kieliszewski, M. J., and Showalter, A. M. (2006) Salt-stress upregulates periplasmic arabinogalactans-proteins: using salt-stress to analyse AGP function. New Phytol 169, 479–492.PubMedCrossRefGoogle Scholar
  9. 9.
    Baldwin, T. C., McCann, M. C., and Roberts, K. (1993) A novel hydroxyproline-deficient arabinogalactan protein secreted by suspension-cultured cells of Daucus carota. Plant Physiol 103, 115–123.PubMedGoogle Scholar
  10. 10.
    Baldwin, T. C., Domingo, C., Schindler, T., Seetharaman, G., Stacey, N., and Roberts, K. (2001) DcAGP1, a secreted arabinogalactans protein, is related to a family of basic ­proline-rich proteins. Plant Mol Biol 45, 421–435.PubMedCrossRefGoogle Scholar
  11. 11.
    Smith, J. J., Muldoon, E. P., and Lamport, D. T. A. (1984) Isolation of extensin precursors by direct elution of intact tomato cell suspension cultures. Phytochemistry 23, 1233–1239.CrossRefGoogle Scholar
  12. 12.
    Lamport, D. T. A. (1964) Cell suspension cultures of higher plants, isolation and growth energetics. Exp Cell Res 33, 195–206.PubMedCrossRefGoogle Scholar
  13. 13.
    Lamport, D. T. A. (1969) The isolation and partial characterization of hydroxyproline-rich glycopeptides obtained by enzymic degradation of primary cell walls. Biochemistry 8, 1155–1163.PubMedCrossRefGoogle Scholar
  14. 14.
    Frueauf, J. B., Dolata, M., Leykam, J. F., Lloyd, E. A., Gonzales, M., VandenBosch, K., and Kieliszewski, M. J. (2000) Peptides isolated from cell walls of Medicago trunculata nodules and uninfected root. Phytochemistry 55, 429–438.PubMedCrossRefGoogle Scholar
  15. 15.
    Shpak, E., Leykam, J. F., and Kieliszewski, M. J. (1999) Synthetic genes for glycoprotein design and the elucidation of hydroxyproline-O-glycosylation codes. Proc Natl Acad Sci U S A 96, 14736–14741.PubMedCrossRefGoogle Scholar
  16. 16.
    Tan, L., Leykam, J. F., and Kieliszewski, M. J. (2003) Glycosylation motifs that direct arabinogalactans addition to arabinogalactan-proteins. Plant Physiol 132, 1362–1369.PubMedCrossRefGoogle Scholar
  17. 17.
    Held, M. A., Tan, L., Kamyab, A., Hare, M., Shpak, E., and Kieliszewski, M. J. (2004) Di-isodityrosine is the intermolecular cross-link of isodityrosine-rich extensin analogs cross-linked in vitro. J Biol Chem 279, 55474–55482.PubMedCrossRefGoogle Scholar
  18. 18.
    Li, S., and Showalter, A. M. (1996) Cloning and developmental/stress regulated expression of a gene encoding a tomato arabinogalactan protein. Plant Mol Biol 32, 641–652.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhao, Z. D., Tan, L., Showalter, A. M., Lamport, D. T. A., and Kieliszewski, M. J. (2002) Tomato LeAGP-1 arabinogalactan-protein purified from transgenic tobacco corroborates the Hyp contiguity hypothesis. Plant J 31, 431–444.PubMedCrossRefGoogle Scholar
  20. 20.
    An, G., Ebert, P. R., Mitra, A., and Ha, S. B. (1988) Binary vectors. Plant Molecular Biology Manual. Gelvin, S.B. and Schilperoort, R.A. (eds). Dordrecht, Netherlands: Martinus Nijhoff, p. 1–19.Google Scholar
  21. 21.
    Xu, J., Tan, L., Goodrum, K. J., and Kieliszewski, M. J. (2007) High-yields and extended serum half-life of human interferon alpha 2b expressed in tobacco cells as arabinogalactan-protein fusions. Biotechnol Bioeng 97, 997–1008.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Derek T. A. Lamport
    • 1
    Email author
  • Li Tan
    • 2
  • Marcia J. Kieliszewski
    • 3
  1. 1.School of Life SciencesUniversity of SussexBrightonUK
  2. 2.Complex Carbohydrate Research CenterUniversity of GeorgiaAthensUSA
  3. 3.Department of Chemistry and Biochemistry, Biochemistry Research FacilityOhio UniversityAthensUSA

Personalised recommendations