Skip to main content

Using Solid-State 13C NMR Spectroscopy to Study the Molecular Organisation of Primary Plant Cell Walls

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 715))

Abstract

Studies of the mobilities of polysaccharides or parts of polysaccharides in a cell-wall preparation may give clues about the molecular interactions among the polysaccharides in the cell wall and the relative locations of polysaccharides within the cell wall. A number of solid-state 13C NMR techniques have been developed that can be used to investigate different types of polysaccharide mobilities: rigid, semi-rigid, mobile, and highly mobile. In this chapter, techniques are described for obtaining spectra from primary cell-wall preparations using CP/MAS, proton-rotating frame, proton spin-spin, spin-echo relaxation spectra, and single-pulse excitation. We also describe how proton spin relaxation editing can be used to obtain subspectra for cell-wall polysaccharides of different mobilities.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Harris, P. J. (2005) Diversity in plant cell walls. In: Plant diversity and evolution: genotypic and phenotypic variation in higher plants. Henry, R. J., ed. CAB International: Wallingford, pp 201–227.

    Chapter  Google Scholar 

  2. Harris, P. J., and Stone, B. A. (2008) Chemistry and molecular organization of plant cell walls. In: Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Himmel, M. E., ed. Blackwell Publishing, Oxford. pp 61–93.

    Chapter  Google Scholar 

  3. Mohnen, D. (2008) Pectin structure and biosynthesis. Curr Opinion Plant Biol 11, 266–277.

    Article  CAS  Google Scholar 

  4. Hsieh, Y. S. Y., and Harris, P. J. (2009) Xyloglucans of monocotyledons have diverse structures. Mol Plant 2, 943–965.

    Article  PubMed  CAS  Google Scholar 

  5. Trethewey, J. A. K., Campbell, L. M., and Harris, P. J. (2005) (1→3),(1→4)-β-d-­glucans in the cell walls of the Poales (sensu lato): an immunogold labelling study using a monoclonal antibody. Am J Bot 92, 1660–1674.

    Article  PubMed  CAS  Google Scholar 

  6. Newman, R. H., Davies, L. M., and Harris, P. J. (1996) Solid-state 13C nuclear magnetic resonance characterisation of cellulose in the cell walls of Arabidopsis thaliana leaves. Plant Physiol 111, 475–485.

    PubMed  CAS  Google Scholar 

  7. Newman, R. H., Ha, M.-A., and Melton, L. D. (1994) Solid-state 13C NMR investigation of molecular ordering in the cellulose of apple cell walls. J Agric Food Chem 42, 1402–1406.

    Article  CAS  Google Scholar 

  8. Newman, R. H. (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magnet Reson 15, 21–29.

    Article  CAS  Google Scholar 

  9. Newman, R. H., and Davidson, T. C. (2004) Molecular conformations at the cellulose-water interface. Cellulose 11, 23–32.

    Article  CAS  Google Scholar 

  10. Bootten, T. J., Harris, P. J., Melton, L. D., and Newman, R. H. (2008) WAXS and 13C-NMR study of Gluconoacetobacter xylinus ­cellulose in composites with tamarind xyloglucan. Carbohyr Res 343, 221–229.

    Article  CAS  Google Scholar 

  11. Bootten, T. J., Harris, P. J., Melton, L. D., and Newman, R. H. (2004) Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan-­cellulose interactions in the cell wall. J Exp Bot 55, 571–583.

    Article  PubMed  CAS  Google Scholar 

  12. Levy, S., Maclachlan, G., and Staehelin, L. A. (1997) Xyloglucan sidechains modulate ­binding to cellulose during in vitro binding assays as predicted by conformational dynamics simulations. Plant J 11, 373–386.

    Article  PubMed  CAS  Google Scholar 

  13. Horii, F., Hirai, A., and Kitamaru, R. (1984) Cross-polarization/magic angle spinning 13C-NMR study. Molecular chain conformations of native and regenerated cellulose. In: Polymers for fibers and elastomers. Arthur, J.C. Jr, Diefendorf, R.J., Yen, T.F., Needles, H.L., Schaefgen, J.R., Jaffe, M., and Logothetis, A.L. eds. American Chemical Society, 260, pp 27–42.

    Google Scholar 

  14. Jarvis, M. C. (1994) Relationship of chemical shift to glycosidic conformation in the solid state 13C NMR spectra of (1→4)-linked glucose polymers and oligomers: anomeric and related effects. Carbohydr Res 259, 311–318.

    Article  PubMed  CAS  Google Scholar 

  15. Jarvis, M. C., and Apperley, D. C. (1990) Direct observation of cell wall structure in ­living plant tissues by solid-state 13C NMR spectroscopy. Plant Physiol 92, 61–65.

    Article  PubMed  CAS  Google Scholar 

  16. Tang, H., Belton, P. S., Ng, A., and Ryden, P. (1999) 13C MAS NMR studies of the effects of hydration on the cell walls of potatoes and Chinese water chestnuts. J Agric Food Chem 47, 510–517.

    Article  PubMed  CAS  Google Scholar 

  17. Newman, R. H. (1999) Editing the information in solid-state carbon-13 NMR spectra of food. In: Advances in magnetic resonance in food ­science. Belton, P. S, Hills, B. P, and Webb, G. A., eds. The Royal Society of Chemistry: Cambridge, pp 144–157.

    Chapter  Google Scholar 

  18. Newman, R. H. (1992) Solid-state carbon-13 NMR spectroscopy of multiphase biomaterials. In: Viscoelasticity of biomaterials. Glasser, W. G., and Hatakeyama, H., eds. American Chemical Society: Washington, pp 311–319.

    Chapter  Google Scholar 

  19. Tekely, P., and Vignon, M. R. (1987) Proton T 1 and T 2 relaxation times of wood components using 13C CP/MAS NMR. J Polym Sci Part C Polym Lett 25, 257–261.

    Article  CAS  Google Scholar 

  20. Hediger, S., Emsley, L., and Fischer, M. (1999) Solid-state NMR characterization of hydration on polymer mobility in onion cell-wall material. Carbohydr Res 322, 102–112.

    Article  CAS  Google Scholar 

  21. Zumbulyadis, N. (1983) Selective carbon excitation and the detection of spatial heterogeneity in cross-polarization magic-angle-spinning NMR. J Magn Reson 53, 486–494.

    CAS  Google Scholar 

  22. Tang, H., and Hills, B. P. (2003) Use of 13C MAS NMR to study domain structure and dynamics of polysaccharides in the native starch granules. Biomacromolecules 4, 1269–1276.

    Article  PubMed  CAS  Google Scholar 

  23. VanderHart, D. L. (1987) Natural-abundance 13C-13C spin exchange in rigid crystalline ­solids. J Magn Reson 72, 13–47.

    CAS  Google Scholar 

  24. Foster, T. J, Ablett, S., McCann, M. C., and Gidley, M. J. (1996) Mobility-resolved 13C-NMR spectroscopy of primary plant cell walls. Biopolymers 39, 51–66.

    Article  CAS  Google Scholar 

  25. Smith, B. G., Harris, P. J., Melton, L. D, and Newman, R. H. (1998) The range of mobility of the non-cellulosic polysaccharides is similar in primary cell walls with different polysaccharide compositions. Physiol Plant 103, 233–246.

    Article  CAS  Google Scholar 

  26. Harris, P. J. (1983) Cell walls. In: Isolation of membranes and organelles from plant cell walls. Hall, J. L. and Moore, A. L., eds. Academic: London, pp 25–53.

    Google Scholar 

  27. Melton, L. D., and Smith, B. G. (2005). Isolation of plant cell walls and fractionation of cell wall polysaccharides. In: Handbook of food analytical chemistry: water, proteins, enzymes, lipids and carbohydrates. Wrolstad, R. E., ed. Wiley: Hoboken, pp 697–719.

    Google Scholar 

  28. Newman, R. H., and Hemmingson, J. A. (1990) Determination of the degree of cellulose crystalinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung 44, 351–355.

    Article  CAS  Google Scholar 

  29. Sinitsya, A., Čopíková, J., and Pavlíková, H. (1998) 13C CP/MAS NMR spectroscopy in the analysis of pectins. J Carbohydr Chem 17, 279–292.

    Article  CAS  Google Scholar 

  30. Jarvis, M. C., and Apperley, D. C. (1995) Chain conformation in concentrated pectic gels: evidence from 13C NMR. Carbohydr Res 275, 131–145.

    Article  CAS  Google Scholar 

  31. Bootten, T. J., Harris, P. J., Melton, L. D., and Newman, R. H. (2009) A Solid-state 13C-NMR study of a composite of tobacco xyloglucan and Gluconacetobacter xylinus cellulose: molecular interactions between the component polysaccharides. Biomacromolecules 10, 2961–2967.

    Article  PubMed  CAS  Google Scholar 

  32. Jelinski, L. W., and Melchior, M. T. (1996) High-resolution NMR of solids. In: NMR spectroscopy techniques. Practical Spectroscopy Series, 2. Bruch, M. D., ed. Marcel Dekker: New York, pp 417–486.

    Google Scholar 

  33. Thimm, J. C., Burritt D. J., Ducker, W. A., and Melton, L. D. (2000). Celery (Apium graveolens L.) parenchyma cell walls examined by atomic force microscopy. Planta 212, 25–32.

    Article  PubMed  CAS  Google Scholar 

  34. Newman, R. H. (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11, 45–52.

    Article  CAS  Google Scholar 

  35. Newman, R. H. (1997) Crystalline forms of cellulose in the silver tree fern. Cyathea Dealbata Cellulose 4, 269–278.

    Article  CAS  Google Scholar 

  36. Newman, R. H., and Redgwell, R. J. (2002) Cell wall changes in ripening kiwifruit: 13C solid state NMR characterisation of relatively rigid cell wall polymers. Carbohydr Polym 49, 121–129.

    Article  CAS  Google Scholar 

  37. Atalla, R. H., and Vanderhart, D. L. (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223, 283–285.

    Article  PubMed  CAS  Google Scholar 

  38. Newman, R. H., and Hemmingson, J. A. (1995) Carbon-13 NMR distinction between categories of molecular order and disorder in cellulose. Cellulose 2, 95–110.

    Article  CAS  Google Scholar 

  39. Newman, R. H. (1998) Evidence for assignment of 13C NMR signals to cellulose crystallite surfaces in wood, pulp and isolated celluloses. Holzforschung 52, 157–159.

    Article  CAS  Google Scholar 

  40. Hirai, A., Horii, F., and Kitamaru, R. (1990) Carbon-13 spin-lattice relaxation behaviour of the crystalline and non-crystalline components of native and regenerated celluloses. Cellulose Chem Technol 24, 703–711.

    CAS  Google Scholar 

  41. Braccini, I., Hervé du Penhoat, C., Michon, V., Goldberg. R., Clochard, M., Jarvis, M. C., Huang, Z.-H., and Gage, D.A. (1995) Structural analysis of cyclamen seed ­xyloglucan oligosaccharides using cellulase digestion and spectroscopic methods. Carbohydr Res 276, 167–181.

    Article  PubMed  CAS  Google Scholar 

  42. Gidley, M. J., Lillford, P. J., Rowlands, D. W., Lang, P., Dentini, M., Crescenzi, V., Edwards, M., Fanutti, C., and Reid, J. S. G. (1991) Structure and solution properties of tamarind-seed polysaccharide. Carbohydr Res 214, 299–314.

    Article  PubMed  CAS  Google Scholar 

  43. Davies, L. M., Harris, P. J., and Newman, R. H. (2002) Molecular ordering of cellulose after extraction of polysaccharides from primary cell walls of Arabidopsis thaliana: a solid-state CP/MAS 13C NMR study. Carbohydr Res 337, 587–593.

    Article  PubMed  CAS  Google Scholar 

  44. Whitney, S. E. C., Brigham, J. E., Darke, A. H., Reid, J. S. G., and Gidley, M. J. (1995) In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. Plant J 8, 491–504.

    Article  CAS  Google Scholar 

  45. Joseleau, J. P., Cartier, N., Chambat, G., Faik, A., and Ruel, K. (1992) Structural features and biological activity of xyloglucans from suspension-cultured plant cells. Biochemie 74, 81–88.

    Article  CAS  Google Scholar 

  46. York, W. S., Harvey, L. K., Guillen, R., Albersheim, P., and Darvill, A. G. (1993) Structural analysis of tamarind seed xyloglucan oligosacharides using β-galactosidase digestion and spectroscopic methods. Carbohydr Res 248, 285–301.

    Article  PubMed  CAS  Google Scholar 

  47. Ryden, P., Colquhoun, I. J., and Selvendran, R. R. (1989) Investigation of structural ­features of the pectic polysaccharides of onion by 13C-N.M.R. spectroscopy. Carbohydr Res 185, 233–237.

    Article  CAS  Google Scholar 

  48. Saulnier, L., Brillouet, J. -M., and Joseleau, J. -P. (1988) Structural studies of pectic substances from the pulp of grape berries. Carbohydr Res 182, 63–78.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Harris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bootten, T.J., Harris, P.J., Melton, L.D., Newman, R.H. (2011). Using Solid-State 13C NMR Spectroscopy to Study the Molecular Organisation of Primary Plant Cell Walls. In: Popper, Z. (eds) The Plant Cell Wall. Methods in Molecular Biology, vol 715. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-008-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-008-9_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-007-2

  • Online ISBN: 978-1-61779-008-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics