Using Solid-State 13C NMR Spectroscopy to Study the Molecular Organisation of Primary Plant Cell Walls

  • Tracey J. Bootten
  • Philip J. HarrisEmail author
  • Laurence D. Melton
  • Roger H. Newman
Part of the Methods in Molecular Biology book series (MIMB, volume 715)


Studies of the mobilities of polysaccharides or parts of polysaccharides in a cell-wall preparation may give clues about the molecular interactions among the polysaccharides in the cell wall and the relative locations of polysaccharides within the cell wall. A number of solid-state 13C NMR techniques have been developed that can be used to investigate different types of polysaccharide mobilities: rigid, semi-rigid, mobile, and highly mobile. In this chapter, techniques are described for obtaining spectra from primary cell-wall preparations using CP/MAS, proton-rotating frame, proton spin-spin, spin-echo relaxation spectra, and single-pulse excitation. We also describe how proton spin relaxation editing can be used to obtain subspectra for cell-wall polysaccharides of different mobilities.

Key words

Primary cell walls Polysaccharide mobility Solid-state 13C NMR Proton-spin relaxation editing Single-pulse excitation NMR TEM X-ray diffraction 


  1. 1.
    Harris, P. J. (2005) Diversity in plant cell walls. In: Plant diversity and evolution: genotypic and phenotypic variation in higher plants. Henry, R. J., ed. CAB International: Wallingford, pp 201–227.CrossRefGoogle Scholar
  2. 2.
    Harris, P. J., and Stone, B. A. (2008) Chemistry and molecular organization of plant cell walls. In: Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Himmel, M. E., ed. Blackwell Publishing, Oxford. pp 61–93.CrossRefGoogle Scholar
  3. 3.
    Mohnen, D. (2008) Pectin structure and biosynthesis. Curr Opinion Plant Biol 11, 266–277.CrossRefGoogle Scholar
  4. 4.
    Hsieh, Y. S. Y., and Harris, P. J. (2009) Xyloglucans of monocotyledons have diverse structures. Mol Plant 2, 943–965.PubMedCrossRefGoogle Scholar
  5. 5.
    Trethewey, J. A. K., Campbell, L. M., and Harris, P. J. (2005) (1→3),(1→4)-β-d-­glucans in the cell walls of the Poales (sensu lato): an immunogold labelling study using a monoclonal antibody. Am J Bot 92, 1660–1674.PubMedCrossRefGoogle Scholar
  6. 6.
    Newman, R. H., Davies, L. M., and Harris, P. J. (1996) Solid-state 13C nuclear magnetic resonance characterisation of cellulose in the cell walls of Arabidopsis thaliana leaves. Plant Physiol 111, 475–485.PubMedGoogle Scholar
  7. 7.
    Newman, R. H., Ha, M.-A., and Melton, L. D. (1994) Solid-state 13C NMR investigation of molecular ordering in the cellulose of apple cell walls. J Agric Food Chem 42, 1402–1406.CrossRefGoogle Scholar
  8. 8.
    Newman, R. H. (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magnet Reson 15, 21–29.CrossRefGoogle Scholar
  9. 9.
    Newman, R. H., and Davidson, T. C. (2004) Molecular conformations at the cellulose-water interface. Cellulose 11, 23–32.CrossRefGoogle Scholar
  10. 10.
    Bootten, T. J., Harris, P. J., Melton, L. D., and Newman, R. H. (2008) WAXS and 13C-NMR study of Gluconoacetobacter xylinus ­cellulose in composites with tamarind xyloglucan. Carbohyr Res 343, 221–229.CrossRefGoogle Scholar
  11. 11.
    Bootten, T. J., Harris, P. J., Melton, L. D., and Newman, R. H. (2004) Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan-­cellulose interactions in the cell wall. J Exp Bot 55, 571–583.PubMedCrossRefGoogle Scholar
  12. 12.
    Levy, S., Maclachlan, G., and Staehelin, L. A. (1997) Xyloglucan sidechains modulate ­binding to cellulose during in vitro binding assays as predicted by conformational dynamics simulations. Plant J 11, 373–386.PubMedCrossRefGoogle Scholar
  13. 13.
    Horii, F., Hirai, A., and Kitamaru, R. (1984) Cross-polarization/magic angle spinning 13C-NMR study. Molecular chain conformations of native and regenerated cellulose. In: Polymers for fibers and elastomers. Arthur, J.C. Jr, Diefendorf, R.J., Yen, T.F., Needles, H.L., Schaefgen, J.R., Jaffe, M., and Logothetis, A.L. eds. American Chemical Society, 260, pp 27–42.Google Scholar
  14. 14.
    Jarvis, M. C. (1994) Relationship of chemical shift to glycosidic conformation in the solid state 13C NMR spectra of (1→4)-linked glucose polymers and oligomers: anomeric and related effects. Carbohydr Res 259, 311–318.PubMedCrossRefGoogle Scholar
  15. 15.
    Jarvis, M. C., and Apperley, D. C. (1990) Direct observation of cell wall structure in ­living plant tissues by solid-state 13C NMR spectroscopy. Plant Physiol 92, 61–65.PubMedCrossRefGoogle Scholar
  16. 16.
    Tang, H., Belton, P. S., Ng, A., and Ryden, P. (1999) 13C MAS NMR studies of the effects of hydration on the cell walls of potatoes and Chinese water chestnuts. J Agric Food Chem 47, 510–517.PubMedCrossRefGoogle Scholar
  17. 17.
    Newman, R. H. (1999) Editing the information in solid-state carbon-13 NMR spectra of food. In: Advances in magnetic resonance in food ­science. Belton, P. S, Hills, B. P, and Webb, G. A., eds. The Royal Society of Chemistry: Cambridge, pp 144–157.CrossRefGoogle Scholar
  18. 18.
    Newman, R. H. (1992) Solid-state carbon-13 NMR spectroscopy of multiphase biomaterials. In: Viscoelasticity of biomaterials. Glasser, W. G., and Hatakeyama, H., eds. American Chemical Society: Washington, pp 311–319.CrossRefGoogle Scholar
  19. 19.
    Tekely, P., and Vignon, M. R. (1987) Proton T 1 and T 2 relaxation times of wood components using 13C CP/MAS NMR. J Polym Sci Part C Polym Lett 25, 257–261.CrossRefGoogle Scholar
  20. 20.
    Hediger, S., Emsley, L., and Fischer, M. (1999) Solid-state NMR characterization of hydration on polymer mobility in onion cell-wall material. Carbohydr Res 322, 102–112.CrossRefGoogle Scholar
  21. 21.
    Zumbulyadis, N. (1983) Selective carbon excitation and the detection of spatial heterogeneity in cross-polarization magic-angle-spinning NMR. J Magn Reson 53, 486–494.Google Scholar
  22. 22.
    Tang, H., and Hills, B. P. (2003) Use of 13C MAS NMR to study domain structure and dynamics of polysaccharides in the native starch granules. Biomacromolecules 4, 1269–1276.PubMedCrossRefGoogle Scholar
  23. 23.
    VanderHart, D. L. (1987) Natural-abundance 13C-13C spin exchange in rigid crystalline ­solids. J Magn Reson 72, 13–47.Google Scholar
  24. 24.
    Foster, T. J, Ablett, S., McCann, M. C., and Gidley, M. J. (1996) Mobility-resolved 13C-NMR spectroscopy of primary plant cell walls. Biopolymers 39, 51–66.CrossRefGoogle Scholar
  25. 25.
    Smith, B. G., Harris, P. J., Melton, L. D, and Newman, R. H. (1998) The range of mobility of the non-cellulosic polysaccharides is similar in primary cell walls with different polysaccharide compositions. Physiol Plant 103, 233–246.CrossRefGoogle Scholar
  26. 26.
    Harris, P. J. (1983) Cell walls. In: Isolation of membranes and organelles from plant cell walls. Hall, J. L. and Moore, A. L., eds. Academic: London, pp 25–53.Google Scholar
  27. 27.
    Melton, L. D., and Smith, B. G. (2005). Isolation of plant cell walls and fractionation of cell wall polysaccharides. In: Handbook of food analytical chemistry: water, proteins, enzymes, lipids and carbohydrates. Wrolstad, R. E., ed. Wiley: Hoboken, pp 697–719.Google Scholar
  28. 28.
    Newman, R. H., and Hemmingson, J. A. (1990) Determination of the degree of cellulose crystalinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung 44, 351–355.CrossRefGoogle Scholar
  29. 29.
    Sinitsya, A., Čopíková, J., and Pavlíková, H. (1998) 13C CP/MAS NMR spectroscopy in the analysis of pectins. J Carbohydr Chem 17, 279–292.CrossRefGoogle Scholar
  30. 30.
    Jarvis, M. C., and Apperley, D. C. (1995) Chain conformation in concentrated pectic gels: evidence from 13C NMR. Carbohydr Res 275, 131–145.CrossRefGoogle Scholar
  31. 31.
    Bootten, T. J., Harris, P. J., Melton, L. D., and Newman, R. H. (2009) A Solid-state 13C-NMR study of a composite of tobacco xyloglucan and Gluconacetobacter xylinus cellulose: molecular interactions between the component polysaccharides. Biomacromolecules 10, 2961–2967.PubMedCrossRefGoogle Scholar
  32. 32.
    Jelinski, L. W., and Melchior, M. T. (1996) High-resolution NMR of solids. In: NMR spectroscopy techniques. Practical Spectroscopy Series, 2. Bruch, M. D., ed. Marcel Dekker: New York, pp 417–486.Google Scholar
  33. 33.
    Thimm, J. C., Burritt D. J., Ducker, W. A., and Melton, L. D. (2000). Celery (Apium graveolens L.) parenchyma cell walls examined by atomic force microscopy. Planta 212, 25–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Newman, R. H. (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11, 45–52.CrossRefGoogle Scholar
  35. 35.
    Newman, R. H. (1997) Crystalline forms of cellulose in the silver tree fern. Cyathea Dealbata Cellulose 4, 269–278.CrossRefGoogle Scholar
  36. 36.
    Newman, R. H., and Redgwell, R. J. (2002) Cell wall changes in ripening kiwifruit: 13C solid state NMR characterisation of relatively rigid cell wall polymers. Carbohydr Polym 49, 121–129.CrossRefGoogle Scholar
  37. 37.
    Atalla, R. H., and Vanderhart, D. L. (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223, 283–285.PubMedCrossRefGoogle Scholar
  38. 38.
    Newman, R. H., and Hemmingson, J. A. (1995) Carbon-13 NMR distinction between categories of molecular order and disorder in cellulose. Cellulose 2, 95–110.CrossRefGoogle Scholar
  39. 39.
    Newman, R. H. (1998) Evidence for assignment of 13C NMR signals to cellulose crystallite surfaces in wood, pulp and isolated celluloses. Holzforschung 52, 157–159.CrossRefGoogle Scholar
  40. 40.
    Hirai, A., Horii, F., and Kitamaru, R. (1990) Carbon-13 spin-lattice relaxation behaviour of the crystalline and non-crystalline components of native and regenerated celluloses. Cellulose Chem Technol 24, 703–711.Google Scholar
  41. 41.
    Braccini, I., Hervé du Penhoat, C., Michon, V., Goldberg. R., Clochard, M., Jarvis, M. C., Huang, Z.-H., and Gage, D.A. (1995) Structural analysis of cyclamen seed ­xyloglucan oligosaccharides using cellulase digestion and spectroscopic methods. Carbohydr Res 276, 167–181.PubMedCrossRefGoogle Scholar
  42. 42.
    Gidley, M. J., Lillford, P. J., Rowlands, D. W., Lang, P., Dentini, M., Crescenzi, V., Edwards, M., Fanutti, C., and Reid, J. S. G. (1991) Structure and solution properties of tamarind-seed polysaccharide. Carbohydr Res 214, 299–314.PubMedCrossRefGoogle Scholar
  43. 43.
    Davies, L. M., Harris, P. J., and Newman, R. H. (2002) Molecular ordering of cellulose after extraction of polysaccharides from primary cell walls of Arabidopsis thaliana: a solid-state CP/MAS 13C NMR study. Carbohydr Res 337, 587–593.PubMedCrossRefGoogle Scholar
  44. 44.
    Whitney, S. E. C., Brigham, J. E., Darke, A. H., Reid, J. S. G., and Gidley, M. J. (1995) In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. Plant J 8, 491–504.CrossRefGoogle Scholar
  45. 45.
    Joseleau, J. P., Cartier, N., Chambat, G., Faik, A., and Ruel, K. (1992) Structural features and biological activity of xyloglucans from suspension-cultured plant cells. Biochemie 74, 81–88.CrossRefGoogle Scholar
  46. 46.
    York, W. S., Harvey, L. K., Guillen, R., Albersheim, P., and Darvill, A. G. (1993) Structural analysis of tamarind seed xyloglucan oligosacharides using β-galactosidase digestion and spectroscopic methods. Carbohydr Res 248, 285–301.PubMedCrossRefGoogle Scholar
  47. 47.
    Ryden, P., Colquhoun, I. J., and Selvendran, R. R. (1989) Investigation of structural ­features of the pectic polysaccharides of onion by 13C-N.M.R. spectroscopy. Carbohydr Res 185, 233–237.CrossRefGoogle Scholar
  48. 48.
    Saulnier, L., Brillouet, J. -M., and Joseleau, J. -P. (1988) Structural studies of pectic substances from the pulp of grape berries. Carbohydr Res 182, 63–78.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Tracey J. Bootten
    • 1
    • 2
  • Philip J. Harris
    • 1
    Email author
  • Laurence D. Melton
    • 3
  • Roger H. Newman
    • 2
    • 4
  1. 1.School of Biological SciencesThe University of AucklandAucklandNew Zealand
  2. 2.Industrial Research LimitedLower HuttNew Zealand
  3. 3.Food Science, Chemistry DepartmentThe University of AucklandAucklandNew Zealand
  4. 4.ScionRotoruaNew Zealand

Personalised recommendations