Skip to main content

FISH and Immunofluorescence Staining in Chlamydomonas

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 714))

Abstract

Here we describe how to use fluorescence in situ hybridization and immunofluorescence staining to determine the in situ distributions of specific mRNAs and proteins in Chlamydomonas reinhardtii. This unicellular eukaryotic green alga is a major model organism in cell biological research. Chlamydomonas is well suited for these approaches because one can determine the cytological location of fluorescence signals within a characteristic cellular anatomy relative to prominent cytological markers. Moreover, FISH and IF staining offer practical alternatives to techniques involving fluorescent proteins, which are difficult to express and detect in Chlamydomonas. The main goal of this review is to describe these powerful tools and to facilitate their routine use in Chlamydomonas research.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Harris, E. H. (2001) Chlamydomonas as a Model Organism Annu Rev Plant Physiol Plant Mol Biol 52, 363–406.

    Article  CAS  Google Scholar 

  • Merchant, S. S. et al. (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions Science 318, 245–50.

    CAS  Google Scholar 

  • Maul, J. E., Lilly, J. W., Cui, L., dePamphilis, C. W., Miller, W., Harris, E. H., and Stern, D. B. (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats Plant Cell 14, 2659–79.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann, M., Oertel, W., and Hegemann, P. (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii Plant J 19, 353–61.

    Article  CAS  Google Scholar 

  • Schoppmeier, J., Mages, W., and Lechtreck, K. F. (2005) GFP as a tool for the analysis of proteins in the flagellar basal apparatus of Chlamydomonas Cell Motil Cytoskeleton 61, 189–200.

    Article  CAS  Google Scholar 

  • Pittman, J. K., Edmond, C., Sunderland, P. A., and Bray, C. M. (2009) A cation-regulated and proton gradient-dependent cation transporter from Chlamydomonas reinhardtii has a role in calcium and sodium homeostasis J Biol Chem 284, 525–33.

    CAS  Google Scholar 

  • Neupert, J., Karcher, D., and Bock, R. (2009) Generation of Chlamydomonas strains that efficiently express nuclear transgenes Plant J 57, 1140–50.

    CAS  Google Scholar 

  • Franklin, S., Ngo, B., Efuet, E., and Mayfield, S. P. (2002) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast Plant J 30, 733–44.

    CAS  Google Scholar 

  • Stern, D. (2009) Introduction to Chlamydomonas and Its Laboratory Use, Vol. II, second ed., The Chlamydomonas Sourcebook; Organellar and Metabolic Processes Elsevier Academic Press, Amsterdam.

    Google Scholar 

  • Ohad, I., Siekevitz, P., and Palade, G. E. (1967) Biogenesis of chloroplast membranes. II. Plastid differentiation during greening of a dark-grown algal mutant (Chlamydomonas reinhardtii) J Cell Biol 35, 553–84.

    Article  PubMed  CAS  Google Scholar 

  • Goodenough, U. W., and Levine, R. P. (1970) Chloroplast structure and function in ac-20, a mutant strain of Chlamydomonas reinhardtii. 3. Chloroplast ribosomes and membrane organization J Cell Biol 44, 547–62.

    Article  PubMed  CAS  Google Scholar 

  • Chua, N. H., Blobel, G., Siekevitz, P., and Palade, G. E. (1976) Periodic variations in the ratio of free to thylakoid-bound chloroplast ribosomes during the cell cycle of Chlamydomonas reinhardtii J Cell Biol 71, 497–514.

    CAS  Google Scholar 

  • Bourque, D. P., Boynton, J. E., and Gillham, N. W. (1971) Studies on the structure and cellular location of various ribosome and ribosomal RNA species in the green alga Chlamydomonas reinhardtii J Cell Sci 8, 153–83.

    CAS  Google Scholar 

  • Schmidt, R. J., Richardson, C. B., Gillham, N. W., and Boynton, J. E. (1983) Sites of synthesis of chloroplast ribosomal proteins in Chlamydomonas J Cell Biol 96, 1451–63.

    CAS  Google Scholar 

  • Schotz, F., Bathelt, H., Arnold, C.-G., and Schimmer, O. (1972) Ergebnisse der Elektronenmikroskopie von Serienschnitten und der daraus resultierenden dreidimensionalen Rekonstruktion Protoplasma 75, 229–254.

    CAS  Google Scholar 

  • Uniacke, J., and Zerges, W. (2007) Photosystem II Assembly and Repair Are Differentially Localized in Chlamydomonas Plant Cell 19, 3640–54.

    CAS  Google Scholar 

  • Michael, R., McKay, L., and Gibbs, S. P. (1991) Composition and function of pyrenoids: cytochemical and immunocytochemical approaches Canadian Journal of Botany 69, 1040–1052.

    Google Scholar 

  • Colon-Ramos, D. A., Salisbury, J. L., Sanders, M. A., Shenoy, S. M., Singer, R. H., and Garcia-Blanco, M. A. (2003) Asymmetric distribution of nuclear pore complexes and the cytoplasmic localization of beta2-tubulin mRNA in Chlamydomonas reinhardtii Dev Cell 4, 941–52.

    Article  CAS  Google Scholar 

  • Nishimura, Y., Misumi, O., Kato, K., Inada, N., Higashiyama, T., Momoyama, Y., and Kuroiwa, T. (2002) An mt(+) gamete-specific nuclease that targets mt(−) chloroplasts during sexual reproduction in Chlamydomonas reinhardtii Genes Dev 16, 1116–28.

    Article  CAS  Google Scholar 

  • Levitan, A., Trebitsh, T., Kiss, V., Pereg, Y., Dangoor, I., and Danon, A. (2005) Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum Proc Natl Acad Sci U S A 102, 6225–30.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, R. J., Kane, A. S., Petullo, D., and Reimschuessel, R. (2008) Localization of oxythtracycline in Chlamydomonas reinhardtii Journal of Phycology 44, 1282–1289.

    Article  CAS  Google Scholar 

  • Uniacke, J., and Zerges, W. (2008) Stress induces the assembly of RNA granules in the chloroplast of Chlamydomonas reinhardtii J Cell Biol 182, 641–6.

    CAS  Google Scholar 

  • Uniacke, J., and Zerges, W. (2009) Chloroplast protein targeting involves localized translation in Chlamydomonas Proc Natl Acad Sci U S A 106, 1439–44.

    Article  Google Scholar 

  • Harris, E. H. (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use, Academic Press, San Diego.

    Google Scholar 

  • Rochaix, J. D., Mayfield, S. P., Goldschmidt-Clermont, M., and Erickson, J. (1988) The molecular biology of Chlamydomonas, in Plant Molecular Biology; a practical approach (Shaw, C. H., Ed.) pp 253–275, Oxford University Press, USA, Washington, D.C.

    Google Scholar 

  • Femino, A. M., Fogarty, K., Lifshitz, L. M., Carrington, W., and Singer, R. H. (2003) Visualization of single molecules of mRNA in situ Methods Enzymol 361, 245–304.

    CAS  Google Scholar 

  • French, A. P., Mills, S., Swarup, R., Bennett, M. J., and Pridmore, T. P. (2008) Colocalization of fluorescent markers in confocal microscope images of plant cells Nat Protoc 3, 619–28.

    CAS  Google Scholar 

  • Heifetz, P. B., Forster, B., Osmond, C. B., Giles, L. J., and Boynton, J. E. (2000) Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses Plant Physiol 122, 1439–45.

    CAS  Google Scholar 

  • Taylor, A. M., Berchtold, N. C., Perreau, V. M., Tu, C. H., Li Jeon, N., and Cotman, C. W. (2009) Axonal mRNA in Uninjured and Regenerating Cortical Mammalian Axons J. Neurosci. 29, 4697–4707.

    Article  CAS  Google Scholar 

  • Aoyama, H., Hagiwara, Y., Misumi, O., Kuroiwa, T., and Nakamura, S. (2006) Complete elimination of maternal mitochondrial DNA during meiosis resulting in the paternal inheritance of the mitochondrial genome in Chlamydomonas species Protoplasma 228, 231–42.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Alisa Piekny for critical review of the ­manuscript and Marc Champagne and Julio Vazquez for assistance with microscopy. JU and WZ used the confocal microscopes supported by the Centre for Structural and Functional Genomics, Concordia University, the National Science and Engineering Council, and the Canadian Foundation for Innovation. WZ is funded by an operating grant (217566-08) from the National Science and Engineering Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Zerges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Uniacke, J., Colón-Ramos, D., Zerges, W. (2011). FISH and Immunofluorescence Staining in Chlamydomonas . In: Gerst, J. (eds) RNA Detection and Visualization. Methods in Molecular Biology, vol 714. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-005-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-005-8_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-004-1

  • Online ISBN: 978-1-61779-005-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics