Skip to main content

Quantification of Pentose Phosphate Pathway (PPP) Metabolites by Liquid Chromatography-Mass Spectrometry (LC-MS)

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 708))

Abstract

The pentose phosphate pathway plays an important role in several cellular processes including biosynthesis and catabolism of five-carbon sugars and generation of reducing power through NADPH synthesis. Although the pentose phosphate metabolic reaction network has been mapped in substantial detail, the comprehensive quantitative analysis of the rates and regulation of individual reactions remains a major interest for various biofields. Here we describe a simple method for comprehensive quantitative analysis of pentose phosphate pathway intermediates. The method is based on Group Specific Internal Standard Technology (GSIST) labeling in which an experimental sample and corresponding internal standards are derivatized in vitro with isotope-coded reagents in separate reactions, then mixed and analyzed in a single LC-MS run. The use of co-eluting isotope-coded internal standards and experimental molecules eliminates potential issues with ion suppression and allows for precise quantification of individual metabolites. Derivatization also increases hydrophobicity of the metabolites enabling their effective separation using reversed-phase chromatography.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cipollina, C., ten Pierick, A., Canelas, A. B., Seifar, R. M., van Maris, A. J. A., van Dam, J. C., Heijnen, J. J. (2009) A comprehensive method for the quantification of the non-oxidative pentose phosphate pathway intermediates in Saccharomyces cerevisiae by GC-IDMS. J Chromatogr B 877, 3231–3236.

    Article  CAS  Google Scholar 

  2. Koek, M. M., Muilwijk, B., van der Werf, M. J., Hankemeier, T. (2006) Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 78, 1272–1281.

    Article  PubMed  CAS  Google Scholar 

  3. Strelkov, S., von Elstermann, M., Schomburg, D. (2004) Comprehensive analysis of metabolites in Corynebacterium glutamicum by gas chromatography/mass spectrometry. Biol Chem 385, 853–861.

    Article  PubMed  CAS  Google Scholar 

  4. Luo, B., Groenke, K., Takors, R., Wandrey, C., Oldiges, M. (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 1147, 153–164.

    Article  PubMed  CAS  Google Scholar 

  5. Wamelink, M. M., Struys, E. A., Huck, J. H., Roos, B., van der Knaap, M. S., Jakobs, C., Verhoeven, N. M. (2005) Quantification of sugar phosphate intermediates of the pentose phosphate pathway by LC-MS/MS: application to two new inherited defects of metabolism. J Chromatogr B 823, 18–25.

    Article  CAS  Google Scholar 

  6. Yang, W.-C., Sedlak, M., Regnier, F. E., Mosier, N., Ho, N., Adamec, J. (2008) Simultaneous quantification of metabolites involved in central carbon and energy metabolism using reversed-phase liquid chromatography–mass spectrometry and in vitro 13c labeling. Anal Chem 80, 9508–9516.

    Article  PubMed  CAS  Google Scholar 

  7. Yang, W. C., Adamec, J., Regnier, F. E. (2007) Enhancement of the LC/MS analysis of fatty acids through derivatization and stable isotope coding. Anal Chem 79, 5150–5157.

    Article  PubMed  CAS  Google Scholar 

  8. Yang, W. C., Regnier, F. E., Adamec, J. (2008) Comparative metabolite profiling of carboxylic acids in rat urine by CE-ESI MS/MS through positively pre-charged and (2)H-coded derivatization. Electrophoresis 29, 4549–4560.

    Article  PubMed  CAS  Google Scholar 

  9. Yang, W. C., Regnier, F. E., Sliva, D., Adamec, J. (2008) Stable isotope-coded quaternization for comparative quantification of estrogen metabolites by high-performance liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr B 870, 233–240.

    Article  CAS  Google Scholar 

  10. De Koning, W., van Dam, K. A. (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral ph. Anal Biochem 204, 118–123.

    Article  PubMed  Google Scholar 

  11. Gonzalez, B., Francois, J., Renaud, M. (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13, 1347–1355.

    Article  PubMed  CAS  Google Scholar 

  12. Mashego, M. R., Rumbold, K., De Mey, M., Vandamme, E., Soetaert, W., Heijnen, J. J. (2007) Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29, 1–16.

    Article  PubMed  CAS  Google Scholar 

  13. Denkert, C., Budczies, J., Weichert, W., Wohlgemuth, G., Scholz, M., Kind, T., Niesporek, S., Noske, A., Buckendahl, A., Dietel, M., et al. (2008) Metabolite profiling of human colon carcinoma – deregulation of TCA cycle and amino acid turnover. Mol Cancer 7, 72.

    Article  PubMed  Google Scholar 

  14. Parab, G. S., Rao, R., Lakshminarayanan, S., Bing, Y. V., Moochhala, S. M., Swarup, S. (2009) Data-driven optimization of metabolomics methods using rat liver samples. Anal Chem 81, 1315–1323.

    Article  PubMed  CAS  Google Scholar 

  15. Weckwerth, W., Wenzel, K., Fiehn, O. (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4, 78–83.

    Article  PubMed  CAS  Google Scholar 

  16. Wu, H., Southam, A. D., Hines, A., Viant, M. R. (2008) High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem 372, 204–212.

    Article  PubMed  CAS  Google Scholar 

  17. Lange, H. C., Eman, M., van Zuijlen, G., Visser, D., van Dam, J. C., Frank, J., de Mattos, M. J., Heijnen, J. J. (2001) Improved rapid sampling for in vivo kinetics of intracellular metabolites in saccharomyces cerevisiae. Biotechnol Bioeng 75, 406–415.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the US Department of Energy Biomass Program (GO17059-16649) and the National Science Foundation (DBI-0421102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber Jannasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jannasch, A., Sedlak, M., Adamec, J. (2011). Quantification of Pentose Phosphate Pathway (PPP) Metabolites by Liquid Chromatography-Mass Spectrometry (LC-MS). In: Metz, T. (eds) Metabolic Profiling. Methods in Molecular Biology, vol 708. Humana Press. https://doi.org/10.1007/978-1-61737-985-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-985-7_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-984-0

  • Online ISBN: 978-1-61737-985-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics