Advertisement

Systemic Gene Transfer to Skeletal Muscle Using Reengineered AAV Vectors

  • Jana L. Phillips
  • Julia Hegge
  • Jon A. Wolff
  • R. Jude Samulski
  • Aravind Asokan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 709)

Abstract

Gene therapy of musculoskeletal disorders warrants efficient gene transfer to a wide range of muscle groups. Reengineered adeno-associated viral (AAV) vectors that selectively transduce muscle tissue following systemic administration are attractive candidates for such applications. Here we provide examples of several lab-derived AAV vectors that display systemic tissue tropism in mice. Methods to evaluate the efficiency of gene transfer to skeletal muscle following intravenous or isolated limb infusion of AAV ­vectors in mice are discussed in detail.

Key words

AAV Reengineering Capsid Tropism Muscle Gene transfer Isolated limb infusion Gene therapy 

References

  1. 1.
    Guglieri, M., Straub, V., Bushby, K., Lochmüller, H. (2008) Limb-girdle muscular dystrophies. Curr Opin Neurol 21, 576–584.PubMedCrossRefGoogle Scholar
  2. 2.
    Deconinck, N., Dan, B. (2007) Pathophysiology of duchenne muscular dystrophy: current hypotheses. Pediatr Neurol 36, 1–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Farrar, M.A., Johnston, H.M., Grattan-Smith, P., Turner, A., Kiernan, M.C. (2009) Spinal muscular atrophy: molecular mechanisms. Curr Mol Med 9, 851–862.PubMedCrossRefGoogle Scholar
  4. 4.
    Meriggioli, M.N., Sanders, D.B. (2009) Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol 8, 475–490.PubMedCrossRefGoogle Scholar
  5. 5.
    Aldenhoven, M., Sakkers, R.J., Boelens, J., de Koning, T.J., Wulffraat, N.M. (2009) Musculoskeletal manifestations of lysosomal storage disorders. Ann Rheum Dis 68, 1659–1665.PubMedCrossRefGoogle Scholar
  6. 6.
    Mah, C., Cresawn, K.O., Fraites, T.J. Jr, Pacak, C.A., Lewis, M.A., Zolotukhin, I., Byrne, B.J. (2005) Sustained correction of glycogen storage disease type II using adeno-associated virus serotype 1 vectors. Gene Ther 12, 1405–1409.PubMedCrossRefGoogle Scholar
  7. 7.
    Duan, D. (2008) Myodys, a full-length ­dystrophin plasmid vector for Duchenne and Becker muscular dystrophy gene therapy. Curr Opin Mol Ther 10, 86–94.PubMedGoogle Scholar
  8. 8.
    Muir, L.A., Chamberlain, J.S. (2009) Emerging strategies for cell and gene therapy of the muscular dystrophies. Expert Rev Mol Med 25, e18.CrossRefGoogle Scholar
  9. 9.
    Zhu, T., Zhou, L., Mori, S., Wang, Z., McTiernan, C.F., Qiao, C., Chen,C., Wang, D.W., Li, J., Xiao, X. (2005) Sustained whole-body functional rescue in congestive heart failure and muscular dystrophy hamsters by systemic gene transfer. Circulation 112, 2650–2659.PubMedCrossRefGoogle Scholar
  10. 10.
    Tang, Y., Cummins, J., Huard, J., Wang, B. (2010) AAV-directed muscular dystrophy gene therapy. Expert Opin Biol Ther 10, 395–408.PubMedCrossRefGoogle Scholar
  11. 11.
    Pastores, G.M. (2008) Musculoskeletal complications encountered in the lysosomal storage disorders. Best Pract Res Clin Rheumatol 22, 937–947.PubMedCrossRefGoogle Scholar
  12. 12.
    Mah, C., Pacak, C.A., Cresawn, K.O., Deruisseau, L.R., Germain, S., Lewis, M.A., Cloutier, D.A., Fuller, D.D., Byrne, B.J. (2007) Physiological correction of Pompe disease by systemic delivery of adeno-associated virus serotypes 1 vectors. Mol Ther 15, 501–507.PubMedCrossRefGoogle Scholar
  13. 13.
    Asokan, A., Conway, J.C., Phillips, J.L., Li, C., Hegge, J., Sinnott, R., Yadav, S., DiPrimio, N., Nam, H.J., Agbandje-McKenna, M., McPhee, S., Wolff. J., Samulski, R.J. (2010) Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol 28, 79–82.PubMedCrossRefGoogle Scholar
  14. 14.
    Choi, V.W., Asokan, A., Haberman, R.A., Samulski, R.J. (2007) Production of recombinant adeno-associated viral vectors for in vitro and in vivo use. Curr Protoc Mol Biol Chapter 16 Unit 16.25.Google Scholar
  15. 15.
    Grieger, J.C., Choi, V.W., Samulski, R.J. (2006) Production and characterization of adeno-associated viral vectors. Nat Protoc 1, 1412–1428.PubMedCrossRefGoogle Scholar
  16. 16.
    Zolotukhin, S., Potter, M., Zolotukhin, I., Sakai, Y., Loiler, S., Fraites, T.J. Jr, Chiodo, V.A., Phillipsberg, T., Muzyczka, N., Hauswirth, W.W., Flotte, T.R., Byrne, B.J., Snyder, R.O. (2002) Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 28, 158–167.PubMedCrossRefGoogle Scholar
  17. 17.
    Rabinowitz, J.E., Rolling, F., Li, C., Conrath, H., Xiao,W., Xiao, X., Samulski, R.J. (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76, 791–801.PubMedCrossRefGoogle Scholar
  18. 18.
    Pañeda, A., Vanrell, L., Mauleon, I., Crettaz, J.S., Berraondo, P., Timmermans, E.J., Beattie, S.G,, Twisk, J., van Deventer, S., Prieto, J., Fontanellas, A., Rodriguez-Pena, M.S., Gonzalez-Aseguinolaza, G. (2009) Effect of adeno-associated virus serotype and genomic structure on liver transduction and biodistribution in mice of both genders. Hum Gene Ther 20, 908–917.PubMedCrossRefGoogle Scholar
  19. 19.
    Davidoff, A.M., Ng, C.Y., Zhou, J., Spence, Y., Nathwani, A.C. (2003) Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway. Blood 102, 480–488.PubMedCrossRefGoogle Scholar
  20. 20.
    Hagstrom, J.E., Hegge, J., Zhang, G., Noble, M., Budker, V., Lewis, D.L., Herweijer, H., Wolff, J.A. (2004) A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs. Mol Ther 10, 386–398.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jana L. Phillips
    • 1
  • Julia Hegge
    • 2
  • Jon A. Wolff
    • 2
  • R. Jude Samulski
    • 1
  • Aravind Asokan
    • 1
    • 3
  1. 1.Gene Therapy CenterUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Mirus BioCorporationMadisonUSA
  3. 3.Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations