Monitoring Murine Skeletal Muscle Function for Muscle Gene Therapy

  • Chady H. Hakim
  • Dejia Li
  • Dongsheng DuanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 709)


The primary function of skeletal muscle is to generate force. Muscle force production is compromised in various forms of acquired and/or inherited muscle diseases. An important goal of muscle gene therapy is to recover muscle strength. Genetically engineered mice and spontaneous mouse mutants are readily available for preclinical muscle gene therapy studies. In this chapter, we outlined the methods commonly used for measuring murine skeletal muscle function. These include ex vivo and in situ analysis of the contractile profile of a single intact limb muscle (the extensor digitorium longus for ex vivo assay and the tibialis anterior muscle for in situ assay), grip force analysis, and downhill treadmill exercise. Force measurement in a single muscle is extremely useful for pilot testing of new gene therapy protocols by local gene transfer. Grip force and treadmill assessments offer body-wide evaluation following systemic muscle gene therapy.

Key words

Skeletal muscle Twitch force Tetanic force Eccentric contraction Grip strength Treadmill Gene therapy 



The studies are supported by grants from the National Institutes of Health AR-49419 and the Muscular Dystrophy Association. We thank Drs. Rob Grange, Frank Booth, Steve Yang, and Ron Terjung for helpful discussion during the protocol development.


  1. 1.
    Clark, K. A., McElhinny, A. S., Beckerle, M. C., and Gregorio, C. C. (2002) Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 18, 637–706.PubMedCrossRefGoogle Scholar
  2. 2.
    Huijing, P. A. (1999) Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J Biomech 32, 329–345.PubMedCrossRefGoogle Scholar
  3. 3.
    Grounds, M. D., Sorokin, L., and White, J. (2005) Strength at the extracellular matrix-muscle interface. Scand J Med Sci Sports 15, 381–391.PubMedCrossRefGoogle Scholar
  4. 4.
    Burkin, D. J., and Kaufman, S. J. (1999) The alpha7beta1 integrin in muscle development and disease. Cell Tissue Res 296, 183–190.PubMedCrossRefGoogle Scholar
  5. 5.
    Ervasti, J. M., and Sonnemann, K. J. (2008) Biology of the striated muscle dystrophin-glycoprotein complex. Int Rev Cytol 265, 191–225.PubMedCrossRefGoogle Scholar
  6. 6.
    Campbell, K. P. (1995) Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80, 675–679.PubMedCrossRefGoogle Scholar
  7. 7.
    Bostick, B., Yue, Y., Long, C., Marschalk, N., Fine, D. M., Chen, J., and Duan, D. (2009) Cardiac expression of a mini-dystrophin that normalizes skeletal muscle force only partially restores heart function in aged Mdx mice. Mol Ther 17, 253–261.PubMedCrossRefGoogle Scholar
  8. 8.
    Dellorusso, C., Crawford, R. W., Chamberlain, J. S., and Brooks, S. V. (2001) Tibialis anterior muscles in mdx mice are highly susceptible to contraction-induced injury. J Muscle Res Cell Motil 22, 467–475.PubMedCrossRefGoogle Scholar
  9. 9.
    Harper, S. Q., Hauser, M. A., DelloRusso, C., Duan, D., Crawford, R. W., Phelps, S. F., Harper, H. A., Robinson, A. S., Engelhardt, J. F., Brooks, S. V., and Chamberlain, J. S. (2002) Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular. Nat Med 8, 253–261.PubMedCrossRefGoogle Scholar
  10. 10.
    Liu, M., Yue, Y., Harper, S. Q., Grange, R. W., Chamberlain, J. S., and Duan, D. (2005) Adeno-associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury. Mol Ther 11, 245–256.PubMedCrossRefGoogle Scholar
  11. 11.
    Li, D., Yue, Y., and Duan, D. (2008) Preservation of muscle force in mdx3cv mice correlates with low-level expression of a near full-length dystrophin protein. Am J Pathol 172, 1332–1341.PubMedCrossRefGoogle Scholar
  12. 12.
    Li, D., Lai, Y., Yue, Y., Rabinovitch, P. S., Hakim, C., and Duan, D. (2009) Ectopic catalase expression in mitochondria by adeno-associated virus enhances exercise performance in mice. PLoS ONE 4, e6673.PubMedCrossRefGoogle Scholar
  13. 13.
    Brooks, S. V., and Faulkner, J. A. (1988) Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404, 71–82.PubMedGoogle Scholar
  14. 14.
    Burkholder, T. J., Fingado, B., Baron, S., and Lieber, R. L. (1994) Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J Morphol 221, 177–190.PubMedCrossRefGoogle Scholar
  15. 15.
    Ebihara, S., Guibinga, G. H., Gilbert, R., Nalbantoglu, J., Massie, B., Karpati, G., and Petrof, B. J. (2000) Differential effects of dystrophin and utrophin gene transfer in immunocompetent muscular dystrophy (mdx) mice. Physiol Genomics 3, 133–144.PubMedGoogle Scholar
  16. 16.
    Lynch, G. S., Hinkle, R. T., Chamberlain, J. S., Brooks, S. V., and Faulkner, J. A. (2001) Force and power output of fast and slow skeletal muscles from mdx mice 6-28 months old. J Physiol 535, 591–600.PubMedCrossRefGoogle Scholar
  17. 17.
    Eu, J. P., Hare, J. M., Hess, D. T., Skaf, M., Sun, J., Cardenas-Navina, I., Sun, Q. A., Dewhirst, M., Meissner, G., and Stamler, J. S. (2003) Concerted regulation of skeletal muscle contractility by oxygen tension and endogenous nitric oxide. Proc Natl Acad Sci U S A 100, 15229–15234.PubMedCrossRefGoogle Scholar
  18. 18.
    Faulkner, J. A., Zerba, E., and Brooks, S. V. (1990) Muscle temperature of mammals: cooling impairs most functional properties. Am J Physiol 259, R259–R265.PubMedGoogle Scholar
  19. 19.
    Segal, S. S., Faulkner, J. A., and White, T. P. (1986) Skeletal muscle fatigue in vitro is temperature dependent. J Appl Physiol 61, 660–665.PubMedGoogle Scholar
  20. 20.
    Grange, R. W., Gainer, T. G., Marschner, K. M., Talmadge, R. J., and Stull, J. T. (2002) Fast-twitch skeletal muscles of dystrophic mouse pups are resistant to injury from acute mechanical stress. Am J Physiol Cell Physiol 283, C1090–C1101.PubMedGoogle Scholar
  21. 21.
    Lightfoot, J. T., Turner, M. J., Debate, K. A., and Kleeberger, S. R. (2001) Interstrain variation in murine aerobic capacity. Med Sci Sports Exerc 33, 2053–2057.PubMedCrossRefGoogle Scholar
  22. 22.
    Handschin, C., Summermatter, S., LeBrasseur, N. K., Lin, J., and Spiegelman, B. M. (2010) For a pragmatic approach to exercise studies. J Appl Physiol 108, 223–223; author reply 26.Google Scholar
  23. 23.
    Booth, F. W., Laye, M. J., and Spangenburg, E. E. (2010) Gold standards for scientists who are conducting animal-based exercise studies. J Appl Physiol 108, 219–221.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Molecular Microbiology and Immunology, School of MedicineThe University of MissouriColumbiaUSA

Personalised recommendations