Codon Optimization of the Microdystrophin Gene for Duchenne Muscular Dystrophy Gene Therapy

  • Takis AthanasopoulosEmail author
  • Helen Foster
  • Keith Foster
  • George Dickson
Part of the Methods in Molecular Biology book series (MIMB, volume 709)


Duchenne muscular dystrophy (DMD) is a severe muscle wasting X-linked genetic disease caused by dystrophin gene mutations. Gene replacement therapy aims to transfer a functional full-length dystrophin cDNA or a quasi micro/mini-gene into the muscle. A number of AAV vectors carrying microdystrophin genes have been tested in the mdx model of DMD. Further modification/optimization of these microgene vectors may improve the therapeutic potency. In this chapter, we describe a species-specific, codon optimization protocol to improve microdystrophin gene therapy in the mdx model.

Key words

Codon optimization mRNA AAV Adeno-associated virus Duchenne muscular ­dystrophy Dystrophin Microdystrophin Minidystrophin Quasidystrophin Gene therapy Muscle mdx 


  1. 1.
    Foster, H., Sharp, P.S., Athanasopoulos, T., Trollet, C., Graham, I.R., Foster, K., Wells, D.J., and Dickson, G. (2008) Codon and mRNA sequence optimization of microdystrophin transgenes improves expression and physiological outcome in dystrophic mdx mice following AAV2/8 gene transfer. Mol Ther 16, 1825–1832.PubMedCrossRefGoogle Scholar
  2. 2.
    Angellotti, M.C., Bhuiyan, S.B., Chen, G., and Wan, X.F. (2007) Codon O: codon usage bias analysis within and across genomes. Nucleic Acids Res 35, W132–W136.PubMedCrossRefGoogle Scholar
  3. 3.
    Shabalina, S.A., Ogurtsov, A.Y., and Spiridonov, N.A. (2006) A periodic pattern of mRNA secondary structure created by the genetic code. Nucleic Acids Res 34, 2428–2437.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhou, T., Weems, M., and Wilke, C.O. (2009) Translationally optimal codons associate with structurally sensitive sites in proteins. Mol Biol Evol 26, 1571–1580.PubMedCrossRefGoogle Scholar
  5. 5.
    Ramakrishna, L., Anand, K.K., Mohankumar, K.M., and Ranga, U. (2004) Codon optimization of the tat antigen of human immunodeficiency virus type 1 generates strong immune responses in mice following genetic immunization. J Virol 78, 9174–9189.PubMedCrossRefGoogle Scholar
  6. 6.
    Patterson, S.S., Dionisi, H.M., Gupta, R.K., and Sayler, G.S. (2005) Codon optimization of bacterial luciferase (lux) for expression in mammalian cells. J Ind Microbiol Biotechnol 32, 115–123.PubMedCrossRefGoogle Scholar
  7. 7.
    Nguyen, K.L., Ilano, M., Akari, H., Miyagi, E., Poeschla, E.M., Strebel, K., and Bour, S. (2004) Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression. Virology 319, 163–175.PubMedCrossRefGoogle Scholar
  8. 8.
    Sakai, H., Washio, T., Saito, R., Shinagawa, A., Itoh, M., Shibata, K., Carninci, P., Konno, H., Kawai, J., Hayashizaki, Y., and Tomita, M. (2001) Correlation between sequence conservation of the 5′ untranslated region and codon usage bias in Mus musculus genes. Gene 276, 101–105.PubMedCrossRefGoogle Scholar
  9. 9.
    Anson, D.S., and Limberis, M. (2004) An improved beta-galactosidase reporter gene. J Biotechnol 108, 17–30.PubMedCrossRefGoogle Scholar
  10. 10.
    Burgess-Brown, N.A., Sharma, S., Sobott, F., Loenarz, C., Oppermann, U., and Gileadi, O. (2008) Codon optimization can improve expression of human genes in Escherichia coli: a multi-gene study. Protein Expr Purif 59, 94–102.PubMedCrossRefGoogle Scholar
  11. 11.
    Wu, X., Jornvall, H., Berndt, K.D., and Oppermann, U. (2004) Codon optimization reveals critical factors for high level expression of two rare codon genes in Escherichia coli: RNA stability and secondary structure but not tRNA abundance. Biochem Biophys Res Commun 313, 89–96.PubMedCrossRefGoogle Scholar
  12. 12.
    Jia, M., and Li, Y. (2005) The relationship among gene expression, folding free energy and codon usage bias in Escherichia coli. FEBS Lett 579, 5333–5337.PubMedCrossRefGoogle Scholar
  13. 13.
    Dos, R.M., and Wernisch, L. (2009) Estimating translational selection in eukaryotic genomes. Mol Biol Evol 26, 451–461.CrossRefGoogle Scholar
  14. 14.
    Kudla, G., Murray, A.W., Tollervey, D., and Plotkin, J.B. (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258.PubMedCrossRefGoogle Scholar
  15. 15.
    Harper, S.Q., Hauser, M.A., DelloRusso, C., Duan, D., Crawford, R.W., Phelps, S.F., Harper, H.A., Robinson, A.S., Engelhardt, J.F., Brooks, S.V., and Chamberlain, J.S. (2002) Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 8, 253–261.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Takis Athanasopoulos
    • 3
    Email author
  • Helen Foster
    • 1
    • 2
  • Keith Foster
    • 1
    • 2
  • George Dickson
    • 1
    • 2
    • 3
  1. 1.Institute of Biomedical and Life Sciences, South West London Academic NetworkSt. George’s University of LondonLondonUK
  2. 2.Centre for Biomedical Sciences, School of Biological Sciences, Royal HollowayUniversity of LondonLondonUK
  3. 3.School of Biological Sciences, Royal HollowayUniversity of LondonLondonUK

Personalised recommendations