Lentiviral Vector Delivery of shRNA into Cultured Primary Myogenic Cells: A Tool for Therapeutic Target Validation

  • Emmanuel Richard
  • Gaelle Douillard-Guilloux
  • Catherine CaillaudEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 709)


RNA interference has emerged as a powerful technique to down-regulate gene expression. The lentiviral vector-mediated expression of small hairpin RNAs (shRNAs) from polymerase III promoters allows permanent down-regulation of a specific gene in a wide range of cell types both in vitro and in vivo. In this chapter, we describe a method permitting the expression of shRNA from lentiviral vectors in primary murine myogenic cells. We designed shRNAs targeted to the muscular glycogen synthase isoform (shGYS1), a highly regulated enzyme responsible for glycogen synthesis, in order to modulate the muscle glycogen biosynthetic pathway and to improve the phenotype in primary myogenic cells from a murine model of glycogen storage disease type II (GSDII). This method based on shRNA-mediated down-regulation could be applied to other muscular disorders to evaluate new therapeutic options.

Key words

Lentiviral vector RNA interference Muscular disorder Glycogen synthesis Glycogen synthase Glycogen storage disease Pompe disease Lysosomal storage disorder 



This work was supported by INSERM and the Association Vaincre les Maladies Lysosomales (VML). ER was supported by postdoctoral fellowships from VML and the Association Française contre les Myopathies (AFM). GD was supported by doctoral fellowship from Genzyme (France) and AFM.


  1. 1.
    Matzke, M.A., Birchler, J.A. (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6, 24–35.PubMedCrossRefGoogle Scholar
  2. 2.
    Agrawal, N., Dasaradhi, P.V., Mohmmed, A., Malhotra, P, Bhatnagar, R.K., Mukherjee, S.K. (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67, 657–685.PubMedCrossRefGoogle Scholar
  3. 3.
    Naldini, L., Blömer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F.H., Verma, I.M., Trono, D. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.PubMedCrossRefGoogle Scholar
  4. 4.
    Zufferey, R., Dull, T., Mandel, R.J., Bukovsky, A., Quiroz, D., Naldini, L., Trono, D. (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72, 9873–9880.PubMedGoogle Scholar
  5. 5.
    Li, S., Kimura, E., Fall, B.M., Reyes, M., Angello, J.C., Welikson, R., Hauschka, S.D., Chamberlain, J.S. (2005) Stable transduction of myogenic cells with lentiviral vectors expressing a minidystrophin. Gene Ther 12, 1099–1108.PubMedCrossRefGoogle Scholar
  6. 6.
    Ikemoto, M., Fukada, S., Uezumi, A., Masuda, S., Miyoshi, H., Yamamoto, H., Wada, M.R., Masubuchi, N., Miyagoe-Suzuki, Y., Takeda, S. (2007) Autologous transplantation of SM/C-2.6(+) satellite cells transduced with micro-dystrophin CS1 cDNA by lentiviral vector into mdx mice. Mol Ther 15, 2178–2185.PubMedCrossRefGoogle Scholar
  7. 7.
    Richard, E., Douillard-Guilloux, G., Batista, L, Caillaud, C. (2008) Correction of glycogenosis type 2 by muscle-specific lentiviral vector. In Vitro Cell Dev Biol Anim 44, 397–406.PubMedCrossRefGoogle Scholar
  8. 8.
    Rubinson, D.A., Dillon, C.P., Kwiatkowski, A.V., Sievers C., Yang, L., Kopinja, J., Rooney, D.L., Zhang, M., Ihrig, M.M., McManus, M.T., Gertler, F.B., Scott, M.L., Van Parijs, L. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33, 401–406. Erratum in: (2003) Nat Genet 34, 231.Google Scholar
  9. 9.
    Tiscornia, G., Singer, O., Ikawa, M., Verma, I.M. (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 100, 1844–1848.PubMedCrossRefGoogle Scholar
  10. 10.
    Hirschhorn, R., Reuser, A. (2001) Glycogen storage disease type II: acid alpha-glucosidase (acid maltase) deficiency. In The Metabolic and Molecular Bases of Inherited Disease, McGraw Hill, New York, pp 3389–3420.Google Scholar
  11. 11.
    Kishnani, P.S., Steiner, R.D., Bali, D., Berger, K., Byrne, B.J., Case, L.E., Crowley, J.F., Downs, S., Howell, R.R., Kravitz, R.M., Mackey, J., Marsden, D., Martins, A.M., Millington, D.S., Nicolino, M., O’Grady, G., Patterson, M.C., Rapoport, D.M., Slonim, A., Spencer, C.T., Tifft, C.J., Watson, M.S. (2006) Pompe disease diagnosis and management guideline. Genet Med 8, 267–288.PubMedCrossRefGoogle Scholar
  12. 12.
    Raben, N., Nagaraju, K., Lee, E., Kessler, P., Byrne, B., Lee, L., LaMarca, M., King, C., Ward, J., Sauer, B, Plotz P. (1998) Targeted disruption of the acid alpha-glucosidase gene in mice causes an illness with critical features of both infantile and adult human glycogen storage disease type II. J Biol Chem 7, 53–62.Google Scholar
  13. 13.
    Bijvoet, AG., van de Kamp, E.H., Kroos, M.A., Ding, J.H., Yang, B.Z., Visser, P., Bakker, C.E., Verbeet, M.P., Oostra, B.A., Reuser, A.J., van der Ploeg, A.T. (1998) Generalized glycogen storage and cardiomegaly in a knockout mouse model of Pompe disease. Hum Mol Genet 7, 53–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Bruni, S., Loschi, L., Incerti, C., Gabrielli, O., Coppa, G.V. (2007) Update on treatment of lysosomal storage diseases. Acta Myol 26, 87–92.PubMedGoogle Scholar
  15. 15.
    Douillard-Guilloux, G., Raben, N., Takikita, S., Batista, L., Caillaud, C., Richard, E. (2008) Modulation of glycogen synthesis by RNA interference: towards a new therapeutic approach for glycogenosis type II. Hum Mol Genet 17, 3876–3886.PubMedCrossRefGoogle Scholar
  16. 16.
    Mäkinen, P.I., Koponen, J.K., Kärkkäinen, A.M., Malm, T.M., Pulkkinen, K.H., Koistinaho, J., Turunen, M.P., Ylä-Herttuala, S. (2006) Stable RNA interference: comparison of U6 and H1 promoters in endothelial cells and in mouse brain. J Gene Med 8, 433–441.PubMedCrossRefGoogle Scholar
  17. 17.
    Naito, Y., Yamada, T., Ui-Tei, K., Morishita, S., Saigo, K. (2004) siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res 32, W124–W129.PubMedCrossRefGoogle Scholar
  18. 18.
    Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki H., Juni, A., Ueda, R., Saigo, K. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32, 936–948.PubMedCrossRefGoogle Scholar
  19. 19.
    Ohanna, M., Sobering, A.K., Lapointe, T., Lorenzo, L., Praud, C., Petroulakis, E., Sonenberg, N., Kelly, P.A., Sotiropoulos, A., Pende, M. (2005) Atrophy of S6K1(−/−) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 7, 286–294.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Emmanuel Richard
    • 1
  • Gaelle Douillard-Guilloux
    • 1
  • Catherine Caillaud
    • 1
    Email author
  1. 1.INSERM U876, IFR 66, Université Bordeaux 2BordeauxFrance

Personalised recommendations