Advertisement

Application of MicroRNA in Cardiac and Skeletal Muscle Disease Gene Therapy

  • Zhan-Peng Huang
  • Ronald L. NepplJr.
  • Da-Zhi Wang
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 709)

Abstract

MicroRNAs (miRNAs) are a class of small ∼22 nt noncoding RNAs. miRNAs regulate gene expression at the posttranscriptional levels by destabilization and degradation of the target mRNA or by translational repression. Numerous studies have demonstrated that miRNAs are essential for normal mammalian development and organ function. Deleterious changes in miRNA expression play an important role in human diseases. We and others have previously reported several muscle-specific miRNAs, including miR-1/206, miR-133, and miR-208. These muscle-specific miRNAs are essential for normal myoblast differentiation and proliferation, and they have also been implicated in various cardiac and skeletal muscular diseases. miRNA-based gene therapies hold great potential for the treatment of cardiac and skeletal muscle disease(s). Herein, we introduce the methods commonly applied to study the biological role of miRNAs, as well as the techniques utilized to manipulate miRNA expression.

Key words

miRNA Muscle Cardiac Gene expression Posttranscriptional regulation Gene therapy 

Notes

Acknowledgments

We thank members of the Wang laboratory for discussion and support. Research in the Wang lab was supported by the March of Dimes Birth Defect Foundation, National Institutes of Health and Muscular Dystrophy Association. DZ Wang is an established investigator of the American Heart Association.

References

  1. 1.
    Wagner, K.R. (2002) Genetic diseases of muscle. Neurol Clin. 20, 645–678.PubMedCrossRefGoogle Scholar
  2. 2.
    Wakatsuki, T., Schlessinger, J., and Elson, E.L. (2004) The biochemical response of the heart to hypertension and exercise. Trends Biochem Sci. 29, 609–617.PubMedCrossRefGoogle Scholar
  3. 3.
    Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116, 281–297.PubMedCrossRefGoogle Scholar
  4. 4.
    He, L., Thomson, J.M., Hemann, M.T., Hernando-Monge, E., Mu, D., Goodson, S., Powers, S., Cordon-Cardo, C., Lowe, S.W., Hannon, G.J., and Hammond, S.M. (2005) A microRNA polycistron as a potential human oncogene. Nature. 435, 828–833.PubMedCrossRefGoogle Scholar
  5. 5.
    Rodriguez, A., Griffiths-Jones, S., Ashurst, J.L., and Bradley, A. (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910.PubMedCrossRefGoogle Scholar
  6. 6.
    Ruby, J.G., Jan, C.H., and Bartel, D.P. (2007) Intronic microRNA precursors that bypass Drosha processing. Nature. 448, 83–86.PubMedCrossRefGoogle Scholar
  7. 7.
    Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016.PubMedCrossRefGoogle Scholar
  8. 8.
    Hutvágner, G., McLachlan, J., Pasquinelli, A.E., Bálint, E., Tuschl, T., and Zamore, P.D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 293, 834–838.PubMedCrossRefGoogle Scholar
  9. 9.
    Schwarz, D.S., Hutvágner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P.D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell. 115, 199–208.PubMedCrossRefGoogle Scholar
  10. 10.
    Lee, R.C., and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science. 294, 862–864.PubMedCrossRefGoogle Scholar
  11. 11.
    Williams, A.H., Liu, N., van Rooij, E., and Olson, E.N. (2009) MicroRNA control of muscle development and disease. Curr Opin Cell Biol. 21(3):461–469.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhao, Y., Samal, E., and Srivastava, D. (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 436, 214–220.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen, J.F., Mandel, E.M., Thomson, J.M., Wu, Q., Callis, T.E., Hammond, S.M., Conlon, F.L., and Wang, D.Z. (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 38, 228–233.PubMedCrossRefGoogle Scholar
  14. 14.
    van Rooij, E., Sutherland, L.B., Qi, X., Richardson, J.A., Hill, J., and Olson, E.N. (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 316, 575–579.PubMedCrossRefGoogle Scholar
  15. 15.
    Simon, D.J., Madison, J.M., Conery, A.L., Thompson-Peer, K.L., Soskis, M., Ruvkun, G.B., Kaplan, J.M., and Kim, J.K. (2008) The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell. 133, 903–915.PubMedCrossRefGoogle Scholar
  16. 16.
    Kwon, C., Han, Z., Olson, E.N., and Srivastava, D. (2005) MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci USA. 102, 18986–18991.PubMedCrossRefGoogle Scholar
  17. 17.
    Callis, T.E., and Wang, D.Z. (2008) Taking microRNAs to heart. Trends Mol Med. 14, 254–260.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen, J.F., Callis, T.E., and Wang, D.Z. (2009) MicroRNAs and muscle disorders. J Cell Sci. 122, 13–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Yang,B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., Zhang, Y., Xu, C., Bai, Y., Wang, H., Chen, G., and Wang, Z. (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 13,486–491.PubMedCrossRefGoogle Scholar
  20. 20.
    Eisenberg, I., Eran, A., Nishino, I., Moggio, M., Lamperti, C., Amato, A.A., Lidov, H.G,, Kang, P.B., North, K.N., Mitrani-Rosenbaum, S., Flanigan, K.M., Neely, L.A., Whitney, D., Beggs, A.H., Kohane, I.S., and Kunkel, L.M. (2007) Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA. 104, 17016–17021.PubMedCrossRefGoogle Scholar
  21. 21.
    van Rooij, E., Sutherland, L.B., Liu, N., Williams, A.H., McAnally, J., Gerard, R.D., Richardson, J.A., and Olson, E.N. (2006) A signature pattern of stress-responsive micro­RNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA. 103, 18255–18260.PubMedCrossRefGoogle Scholar
  22. 22.
    van Rooij, E., Sutherland, L.B., Thatcher, J.E., DiMaio, J.M., Naseem, R.H., Marshall, W.S., Hill, J.A., and Olson, E.N. (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA. 105, 13027–13032.PubMedCrossRefGoogle Scholar
  23. 23.
    Tatsuguchi, M., Seok, H.Y., Callis, T.E., Thomson, J.M., Chen, J.F., Newman, M., Rojas, M., Hammond, S.M., and Wang, D.Z. (2007) Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol. 42, 1137–1141.PubMedCrossRefGoogle Scholar
  24. 24.
    McCarthy, J.J., Esser, K.A., and Andrade, F.H. (2007) MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol. 293, C451–C457.PubMedCrossRefGoogle Scholar
  25. 25.
    Gentner, B., Schira, G., Giustacchini, A., Amendola, M., Brown, B.D., Ponzoni, M., and Naldini, L. (2009) Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods. 6, 63–66.PubMedCrossRefGoogle Scholar
  26. 26.
    Krützfeldt, J., Rajewsky, N., Braich, R., Rajeev, K.G., Tuschl, T., Manoharan, M., and Stoffel, M. (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 438, 685–689.PubMedCrossRefGoogle Scholar
  27. 27.
    Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J., Elledge, S.J. (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci USA. 102, 13212–13217.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Zhan-Peng Huang
    • 1
  • Ronald L. NepplJr.
    • 1
  • Da-Zhi Wang
    • 1
  1. 1.Cardiovascular Research Division, Department of CardiologyChildren’s Hospital Boston, Harvard Medical SchoolBostonUSA

Personalised recommendations