Heterologous Gene Expression in E.coli pp 211-224

Part of the Methods in Molecular Biology book series (MIMB, volume 705)

Periplasmic Chaperones Used to Enhance Functional Secretion of Proteins in E. coli


While Escherichia coli is in wide use as a host organism for preparative protein production, problems with the folding of the recombinant gene product as well as protein aggregation, i.e., formation of inclusion bodies, are frequently encountered. This is particularly true for proteins that carry structural disulfide bonds, including antibody fragments, cytokines, growth factors, and extracellular fragments of eukaryotic cell surface receptors. In these cases, secretion into the oxidizing milieu of the bacterial periplasm in principle enables disulfide bond formation, resulting in a correctly folded and soluble protein. However, this process often occurs at low efficiency, depending on the nature of the recombinant gene product. Therefore, we have developed the helper plasmid pTUM4, which effects overexpression of four established periplasmic chaperones and/or folding catalysts: the thiol-disulfide oxidoreductases DsbA and DsbC, which catalyze the formation and isomerization of disulfide bridges, and two peptidyl-prolyl cis/trans isomerases with chaperone activity, FkpA and SurA. Here, we present a detailed protocol how to use this system for the bacterial secretion of recombinant proteins, including human EGF as a new example, and we give hints on optimization of the expression procedure.

Key words

Chaperone disulfide isomerase DsbA DsbC FkpA folding catalyst peptidyl-prolyl cis/trans isomerase SurA 


  1. 1.
    Georgiou, G., Segatori, L. (2005) Preparative expression of secreted proteins in bacteria: status report and future prospects. Curr Opin Biotechnol 16, 538–545.PubMedCrossRefGoogle Scholar
  2. 2.
    Mergulhao, F. J., Summers, D. K., Monteiro, G. A. (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23, 177–202.PubMedCrossRefGoogle Scholar
  3. 3.
    Skerra, A. (1993) Bacterial expression of immunoglobulin fragments. Curr Opin Immunol 5, 256–262.PubMedCrossRefGoogle Scholar
  4. 4.
    Humphreys, D. P. (2003) Production of antibodies and antibody fragments in Escherichia coli and a comparison of their functions, uses and modification. Curr Opin Drug Discov Develop 6, 188–196.Google Scholar
  5. 5.
    Skerra, A., Plückthun, A. (1991) Secretion and in vivo folding of the Fab fragment of the antibody McPC603 in Escherichia coli: influence of disulphides and cis-prolines. Protein Eng 4, 971–979.PubMedCrossRefGoogle Scholar
  6. 6.
    Choi, J. H., Lee, S. Y. (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64, 625–635.PubMedCrossRefGoogle Scholar
  7. 7.
    Baneyx, F., Mujacic, M. (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22, 1399–1408.PubMedCrossRefGoogle Scholar
  8. 8.
    Chan, W., Helms, L. R., Brooks, I., Lee, G., Ngola, S., McNulty, D., Maleeff, B., Hensley, P., Wetzel, R. (1996) Mutational effects on inclusion body formation in the periplasmic expression of the immunoglobulin VL domain REI. Fold Des 1, 77–89.PubMedCrossRefGoogle Scholar
  9. 9.
    Knappik, A., Krebber, C., Plückthun, A. (1993) The effect of folding catalysts on the in vivo folding process of different antibody fragments expressed in Escherichia coli. Biotechnology 11, 77–83.PubMedCrossRefGoogle Scholar
  10. 10.
    Wülfing, C., Plückthun, A. (1994) Protein folding in the periplasm of Escherichia coli. Mol Microbiol 12, 685–692.PubMedCrossRefGoogle Scholar
  11. 11.
    Bardwell, J. C., McGovern, K., Beckwith, J. (1991) Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589.PubMedCrossRefGoogle Scholar
  12. 12.
    Missiakas, D., Georgopoulos, C., Raina, S. (1994) The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J 13, 2013–2020.PubMedGoogle Scholar
  13. 13.
    Shevchik, V. E., Condemine, G., Robert-Baudouy, J. (1994) Characterization of DsbC, a periplasmic protein of Erwinia chrysanthemi and Escherichia coli with disulfide isomerase activity. EMBO J 13, 2007–2012.PubMedGoogle Scholar
  14. 14.
    Fischer, G., Tradler, T., Zarnt, T. (1998) The mode of action of peptidyl prolyl cis/trans isomerases in vivo: binding vs. catalysis. FEBS Lett 426, 17–20.PubMedCrossRefGoogle Scholar
  15. 15.
    Fanghanel, J., Fischer, G. (2004) Insights into the catalytic mechanism of peptidyl prolyl cis/trans isomerases. Front Biosci 9, 3453–3478.PubMedCrossRefGoogle Scholar
  16. 16.
    Rouviere, P. E., Gross, C. A. (1996) SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Develop 10, 3170–3182.PubMedCrossRefGoogle Scholar
  17. 17.
    Dartigalongue, C., Raina, S. (1998) A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. EMBO J 17, 3968–3980.PubMedCrossRefGoogle Scholar
  18. 18.
    Liu, J., Walsh, C. T. (1990) Peptidyl-prolyl cis-trans-isomerase from Escherichia coli: a periplasmic homolog of cyclophilin that is not inhibited by cyclosporin A. Proc Natl Acad Sci USA 87, 4028–4032.PubMedCrossRefGoogle Scholar
  19. 19.
    Horne, S. M., Young, K. D. (1995) Escherichia coli and other species of the Enterobacteriaceae encode a protein similar to the family of Mip-like FK506-binding proteins. Arch Microbiol 163, 357–365.PubMedCrossRefGoogle Scholar
  20. 20.
    Lazar, S. W., Kolter, R. (1996) SurA assists the folding of Escherichia coli outer membrane proteins. J Bacteriol 178, 1770–1773.PubMedGoogle Scholar
  21. 21.
    Hennecke, G., Nolte, J., Volkmer-Engert, R., Schneider-Mergener, J., Behrens, S. (2005) The periplasmic chaperone SurA exploits two features characteristic of integral outer membrane proteins for selective substrate recognition. J Biol Chem 280, 23540–23548.PubMedCrossRefGoogle Scholar
  22. 22.
    Bitto, E., McKay, D. B. (2002) Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure 10, 1489–1498.PubMedCrossRefGoogle Scholar
  23. 23.
    Korndörfer, I. P., Dommel, M. K., Skerra, A. (2004) Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture. Nat Struct Mol Biol 11, 1015–1020.PubMedCrossRefGoogle Scholar
  24. 24.
    Schlapschy, M., Grimm, S., Skerra, A. (2006) A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli. Protein Eng Des Sel 19, 385–390.PubMedCrossRefGoogle Scholar
  25. 25.
    Selzer, G., Som, T., Itoh, T., Tomizawa, J. (1983) The origin of replication of plasmid p15A and comparative studies on the nucleotide sequences around the origin of related plasmids. Cell 32, 119–129.PubMedCrossRefGoogle Scholar
  26. 26.
    Alton, N. K., Vapnek, D. (1979) Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature 282, 864–869.PubMedCrossRefGoogle Scholar
  27. 27.
    Skerra, A., Pfitzinger, I., Plückthun, A. (1991) The functional expression of antibody Fv fragments in Escherichia coli: improved vectors and a generally applicable purification technique. Biotechnology 9, 273–278.PubMedCrossRefGoogle Scholar
  28. 28.
    Skerra, A. (1994) Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151, 131–135.PubMedCrossRefGoogle Scholar
  29. 29.
    Sφrensen, H. P., Mortensen, K. K. (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115, 113–128.PubMedCrossRefGoogle Scholar
  30. 30.
    Yanisch-Perron, C., Vieira, J., Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.PubMedCrossRefGoogle Scholar
  31. 31.
    Strauch, K. L., Beckwith, J. (1988) An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc Natl Acad Sci USA 85, 1576–1580.PubMedCrossRefGoogle Scholar
  32. 32.
    Meerman, H. J., Georgiou, G. (1994) Construction and characterization of a set of E. coli strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. Biotechnology 12, 1107–1110.CrossRefGoogle Scholar
  33. 33.
    Schäfer, U., Beck, K., Müller, M. (1999) Skp, a molecular chaperone of Gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J Biol Chem 274, 24567–24574.PubMedCrossRefGoogle Scholar
  34. 34.
    Jensen, K. F. (1993) The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175, 3401–3407.PubMedGoogle Scholar
  35. 35.
    Studier, F. W., Moffatt, B. A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189, 113–130.PubMedCrossRefGoogle Scholar
  36. 36.
    Breustedt, D. A., Schönfeld, D. L., Skerra, A. (2006) Comparative ligand-binding analysis of ten human lipocalins. Biochim Biophys Acta 1764, 161–173.PubMedGoogle Scholar
  37. 37.
    Nasreen, A., Vogt, M., Kim, H. J., Eichinger, A., Skerra, A. (2006) Solubility engineering and crystallization of human apolipoprotein D. Protein Sci 15, 190–199.PubMedCrossRefGoogle Scholar
  38. 38.
    Schönfeld, D. L., Ravelli, R. B., Mueller, U., Skerra, A. (2008) The 1.8-Å crystal structure of α1-acid glycoprotein (Orosomucoid) solved by UV RIP reveals the broad drug-binding activity of this human plasma lipocalin. J Mol Biol 384, 393–405.PubMedCrossRefGoogle Scholar
  39. 39.
    Chatwell, L., Holla, A., Kaufer, B. B., Skerra, A. (2008) The carbohydrate recognition domain of Langerin reveals high structural similarity with the one of DC-SIGN but an additional, calcium-independent sugar-binding site. Mol Immunol 45, 1981–1994.PubMedCrossRefGoogle Scholar
  40. 40.
    Friedrich, L., Stangl, S., Hahne, H., Küster, B., Köhler, P., Multhoff, G., Skerra, A. (2010) Bacterial production and functional characterization of the Fab fragment of the murine IgG1/λ monoclonal antibody cmHsp70.1, a reagent for tumour diagnostics. Protein Eng Des Sel 23, 161–168.Google Scholar
  41. 41.
    Outchkourov, N. S., Roeffen, W., Kaan, A., Jansen, J., Luty, A., Schuiffel, D., van Gemert, G. J., van de Vegte-Bolmer, M., Sauerwein, R. W., Stunnenberg, H. G. (2008) Correctly folded Pfs48/45 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in mice. Proc Natl Acad Sci USA 105, 4301–4305.PubMedCrossRefGoogle Scholar
  42. 42.
    Xu, Y., Lewis, D., Chou, C. P. (2008) Effect of folding factors in rescuing unstable heterologous lipase B to enhance its overexpression in the periplasm of Escherichia coli. Appl Microbiol Biotechnol 79, 1035–1044.PubMedCrossRefGoogle Scholar
  43. 43.
    Xu, Y., Yasin, A., Wucherpfennig, T., Chou, C. P. (2008) Enhancing functional expression of heterologous lipase in the periplasm of Escherichia coli. World J Microbiol Biotechnol 24, 2827–2835.CrossRefGoogle Scholar
  44. 44.
    Guo, C., Diao, H., Lian, Y., Yu, H., Gao, H., Zhang, Y., Lin, D. (2009) Recombinant expression and characterization of an epididymis-specific antimicrobial peptide BIN1b/SPAG11E. J Biotechnol 139, 33–37.PubMedCrossRefGoogle Scholar
  45. 45.
    Skerra, A. (1994) A general vector, pASK84, for cloning, bacterial production, and single-step purification of antibody Fab fragments. Gene 141, 79–84.PubMedCrossRefGoogle Scholar
  46. 46.
    Sambrook, J., Fritsch, E. F., Maniatis, T. (2001). Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  47. 47.
    Schiweck, W., Skerra, A. (1995) Fermenter production of an artificial Fab fragment, rationally designed for the antigen cystatin, and its optimized crystallization through constant domain shuffling. Proteins 23, 561–565.PubMedCrossRefGoogle Scholar
  48. 48.
    Schmidt, T. G., Skerra, A. (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2, 1528–1535.CrossRefGoogle Scholar
  49. 49.
    Bell, G. I., Fong, N. M., Stempien, M. M., Wormsted, M. A., Caput, D., Ku, L. L., Urdea, M. S., Rall, L. B., Sanchez-Pescador, R. (1986) Human epidermal growth factor precursor: cDNA sequence, expression in vitro and gene organization. Nucleic Acids Res 14, 8427–8446.PubMedCrossRefGoogle Scholar
  50. 50.
    Plückthun, A., Skerra, A. (1989) Expression of functional antibody Fv and Fab fragments in Escherichia coli. Methods Enzymol 178, 497–515.PubMedCrossRefGoogle Scholar
  51. 51.
    Ewis, H. E., Lu, C. D. (2005) Osmotic shock: a mechanosensitive channel blocker can prevent release of cytoplasmic but not periplasmic proteins. FEMS Microbiol Lett 253, 295–301.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Lehrstuhl für Biologische ChemieTechnische Universität MünchenFreising-WeihenstephanGermany

Personalised recommendations