Skip to main content

Recent Developments in Difficult Protein Expression: A Guide to E. coli Strains, Promoters, and Relevant Host Mutations

  • Protocol
  • First Online:
Heterologous Gene Expression in E.coli

Part of the book series: Methods in Molecular Biology ((MIMB,volume 705))

Abstract

Escherichia coli is a versatile and popular tool for heterologous protein production. Some of the reasons for its popularity include rapid growth, a variety of portable vectors, relatively simple genetics, and the potential for high-density cultivation. In addition, the extensive laboratory use of E. coli has resulted in technologies to target protein overexpression to various intracellular compartments. This is advantageous because these compartments have different environments that may facilitate folding of particular proteins of interest. This chapter discusses the properties of many of the E. coli strains available for protein expression in order to facilitate the choice of the best expression host for a particular protein of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilbert, W., Müller-Hill, B. (1966) Isolation of the lac repressor. Proc Natl Acad Sci USA 56, 1891–1898.

    Article  PubMed  CAS  Google Scholar 

  2. Calos, M. P. (1978) DNA sequence for a low-level promoter of the lac repressor gene and an ‘up’ promoter mutation. Nature 274, 762–765.

    Article  PubMed  CAS  Google Scholar 

  3. Hirschel, B. J., Shen, V., Schlessinger, D. (1980) Lactose operon transcription from wild-type and L8-UV5 lac promoters in Escherichia coli treated with chloramphenicol. J Bacteriol 143, 1534–1537.

    PubMed  CAS  Google Scholar 

  4. Eron, L., Block, R. (1971) Mechanism of initiation and repression of in vitro transcription of the lac operon of Escherichia coli. Proc Natl Acad Sci USA 68, 1828–1832.

    Article  PubMed  CAS  Google Scholar 

  5. deBoer H. A., Comstock, L. J., Vasser, M. (1983) The tac promoter: a functional hybrid derived from trp and lac promoters. Proc Natl Acad Sci USA 80, 21–25.

    Article  CAS  Google Scholar 

  6. Amann, E., Brosius, J., Ptashne, M. (1983) Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene 25, 167–178.

    Article  PubMed  CAS  Google Scholar 

  7. Mulligan, M. E., Brosius, J., Clure, W. R. (1985) Characterization in vitro of the effect of spacer length on the activity of Escherichia coli RNA polymerase at the tac promoter. J Biol Chem 260, 3529–3538.

    PubMed  CAS  Google Scholar 

  8. Studier, F. W. (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41, 207–234.

    Article  PubMed  CAS  Google Scholar 

  9. Pan, S. H., Malcolm, B. A. (2000) Reduced background expression and improved plasmid stability with pET vectors in BL21(DE3). Biotechniques 29, 1234–1237.

    PubMed  CAS  Google Scholar 

  10. Zhang, X., Studier, W. F. (1997) Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme. J Mol Biol 269, 10–27.

    Article  PubMed  CAS  Google Scholar 

  11. Cheng, X., Zhang, X., Pflugrath, J. W., Studier, W. F. (1994) The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase. Proc Natl Acad Sci USA 91, 4034–4038.

    Article  PubMed  CAS  Google Scholar 

  12. Studier, W. F., Rosenberg, A. H., Dunn, J. J., Dubendorff, J. W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185, 60–89.

    Article  PubMed  CAS  Google Scholar 

  13. Haldimann, A., Daniels, L. L., Wanner, B. L. (1998) Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the Escherichia coli phosphate regulon. J Bacteriol 180, 1277–1286.

    PubMed  CAS  Google Scholar 

  14. Miroux, B., Walker, J. E. (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260, 289–298.

    Article  PubMed  CAS  Google Scholar 

  15. Wagner, S., Klepsch, M. M., Schlegel, S., Appel, A., Draheim, R., Tarry, M., Högbom, M., van Wijk, K. J., Slotboom, D. J., Persson, J. O., de Gier, J. W. (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci USA 105, 14371–14376.

    Article  PubMed  CAS  Google Scholar 

  16. Suzuki, M., Mao, L., Inouye, M. (2007) Single protein production (SPP) system in Escherichia coli. Nat Protocols 2, 1802–1810.

    Article  CAS  Google Scholar 

  17. Giacalone, M. J., Gentile, A. M., Lovitt, B. T., Berkley, N. L., Gunderson, C. W., Surber, M. W. (2006) Toxic protein expression in Escherichia coli using a rhamnose-based tightly regulated and tunable promoter system. Biotechniques 40, 355–364.

    Article  PubMed  CAS  Google Scholar 

  18. Siegele, D. A., Hu J. C. (1997) Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc Natl Acad Sci USA 94, 8168–8172.

    Article  PubMed  CAS  Google Scholar 

  19. Khlebnikov, A., Datsenko, K. A., Skaug, T., Wanner, B. L., Keasling, J. D. (2001) Homogeneous expression of the P(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147, 3241–3247.

    PubMed  CAS  Google Scholar 

  20. Better, M. D. (2004) Methods and cells for expression of recombinant protein products under the transcriptional control of an inducible promoter. U.S. Patent 6,803,210 Assignee: Xoma Technology Ltd., Berkeley, CA, October 12, 2004

    Google Scholar 

  21. Ferrer, M., Chernikova, T. N., Yakimov, M., Golyshin, P. N., Timmis, K. N. (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol 21, 1266–1267.

    Article  PubMed  CAS  Google Scholar 

  22. Derman, A. I., Prinz, W. A. Belin, D., Beckwith, J. (1993) Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262, 1744–1747.

    Article  PubMed  CAS  Google Scholar 

  23. Stewart, E. J., Aslund, F., Beckwith, J. (1998) Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J 17, 5543–5550.

    Article  PubMed  CAS  Google Scholar 

  24. Schierle, C.F., Berkmen, M., Huber, D., Kumamoto, C., Boyd, D., Beckwith, J. (2003) The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. J Bacteriol 185, 5706–5713.

    Article  PubMed  CAS  Google Scholar 

  25. Emanuelsson, O., Brunak, S., von Heijne, G., Nielsen, H. (2006) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protocols 2, 953–971.

    Article  Google Scholar 

  26. Käll, L., Krogh, A., Sonnhammer, E. L. (2007) Advantages of combined transmembrane topology and signal peptide prediction – the Phobius web server. Nucleic Acids Res 35, W429–W432.

    Article  PubMed  Google Scholar 

  27. Grisshammer, R., Duckworth, R., Henderson, R. (1993) Expression of a rat neurotensin receptor in Escherichia coli. Biochem J 295, 571–576.

    PubMed  CAS  Google Scholar 

  28. Luo, J., Choulet, J., Samuelson, J. C. (2009) Rational design of a fusion partner for membrane protein expression in E. coli. Protein Sci 18, 1735–1744.

    Article  PubMed  CAS  Google Scholar 

  29. Neophytou, I., Harvey, R., Lawrence, J., Marsh, P., Panaretou, B., Barlow, D. (2007) Eukaryotic integral membrane protein expression utilizing the Escherichia coli glycerol-conducting channel protein (GlpF). Appl Microbiol Biotechnol 77, 375–381.

    Article  PubMed  CAS  Google Scholar 

  30. Huber, D., Boyd, D., Xia, Y., Olma, M. H., Gerstein M., Beckwith J. (2005) Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J Bacteriol 187, 2983–2991.

    Article  PubMed  CAS  Google Scholar 

  31. Gardner, T. S., Cantor, C. R., Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342.

    Article  PubMed  CAS  Google Scholar 

  32. Tucker, J., Grisshammer, R. (1996) Purification of a rat neurotensin receptor expressed in Escherichia coli. Biochem J 317, 891–899.

    PubMed  CAS  Google Scholar 

  33. Yeliseev, A. A., Wong, K. K., Soubias. O., Gawrisch, K. (2005) Expression of human peripheral cannabinoid receptor for structural studies. Protein Sci 14, 2638–2653.

    Article  PubMed  CAS  Google Scholar 

  34. Hwang, B. Y., Varadarajan, N., Li, H., Rodriguez, S., Iverson, B. L., Georgiou, G. (2007) Substrate specificity of the Escherichia coli outer membrane protease OmpP. J Bacteriol 189, 522–530.

    Article  PubMed  CAS  Google Scholar 

  35. Link, A. J., Skretas, G., Strauch, E.-M., Chari, N. S., Georgiou, G. (2008) Efficient production of membrane-integrated and detergent-soluble G protein-coupled receptors in Escherichia coli. Protein Sci 17, 1857–1863.

    Article  PubMed  CAS  Google Scholar 

  36. Lewis, K. (2000) Programmed death in bacteria. Micro Mol Biol Rev 64, 503–514.

    Article  CAS  Google Scholar 

  37. Grossman, T. H., Kawasaki, E. S., Punreddy, S. R., Osburne, M. S. (1998) Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 209, 95–103.

    Article  PubMed  CAS  Google Scholar 

  38. Guzman, L. M., Belin, D., Carson, M. J., Beckwith, J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4130.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Marion Sibley, Elisabeth Raleigh, Paul Riggs, Mehmet Berkmen, Bryce Causey, and Jianying Luo of New England Biolabs for many valuable discussions and for sharing unpublished results. NIH-SBIR grant 1 R43 GM 083413 – 01 has supported work related to the overexpression of membrane proteins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Samuelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Samuelson, J.C. (2011). Recent Developments in Difficult Protein Expression: A Guide to E. coli Strains, Promoters, and Relevant Host Mutations. In: Evans, Jr., T., Xu, MQ. (eds) Heterologous Gene Expression in E.coli. Methods in Molecular Biology, vol 705. Humana Press. https://doi.org/10.1007/978-1-61737-967-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-967-3_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-966-6

  • Online ISBN: 978-1-61737-967-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics