Advertisement

Nitric Oxide pp 105-114 | Cite as

Aqueous Measurement of Nitric Oxide Using Membrane Inlet Mass Spectrometry

  • David N. SilvermanEmail author
  • Chingkuang Tu
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 704)

Abstract

Membrane inlet mass spectrometry for the measurement of nitric oxide in aqueous solution provides a direct, continuous, and quantitative determination over long periods of time. The method uses a membrane that is permeable to nitric oxide and separates solution or cell suspension from a partial vacuum leading to the ionization source of a mass spectrometer. The construction of the probe varies depending on use; this report describes an inlet probe comprising a 1.0 cm segment of silicon rubber tubing attached to the vacuum inlet of the mass spectrometer. The probe is immersed in solution or suspension and in the system described here has a response time of 5–7 s and a lower detection limit of 0.5 nM nitric oxide. This apparatus was used to measure the generation of nitric oxide in solutions of NONOates and from the reactions of nitrite with hemoglobin. The usefulness of such an inlet in measuring nitric oxide in physiological systems is discussed.

Key words

Nitric oxide mass spectrometry membrane inlet nitrite hemoglobin 

Notes

Acknowledgment

We thank Dr. Erik Swenson who first suggested this project to us. Work on this research was supported by funds from the University of Florida and NIH GM25154.

References

  1. 1.
    Hoch, G., Kok, B. (1963) A mass spectrometer inlet system for sampling gases dissolved in liquid phases. Arch Biochem Biophys 101, 160–170.PubMedCrossRefGoogle Scholar
  2. 2.
    Lewis, R. S., Deen, W. M., Tannenbaum, S. R., Wishnook, J. S. (1993) Membrane mass spectrometer inlet for quantitation of nitric oxide. Biol Mass Spectrom 22, 45–52.PubMedCrossRefGoogle Scholar
  3. 3.
    Lauritsen, F. R., Lloyd, D. (1994) Direct-detection of volatile metabolites produced by microorganisms – membrane inlet mass-spectrometry. Mass Spectrom Charact Micro 541, 91–106.CrossRefGoogle Scholar
  4. 4.
    Brodbelt, J. S., Cooks, R. G., Tou, J. C., Kallos, G. J., Dryzga, M. D. (1987) In vivo mass-spectrometric determination of organic-compounds in blood with a membrane probe. Anal Chem 59, 454–458.PubMedCrossRefGoogle Scholar
  5. 5.
    Kotiaho, T., Lauritsen, F. R., Choudhury, T. K., Cooks, R. G., Tsao, G. T. (1991) Membrane introduction mass-spectrometry. Anal Chem 63, 875–886.CrossRefGoogle Scholar
  6. 6.
    Lauritsen, F. R., Kotiaho, T., Choudhury, T. K., Cooks, R. G. (1992) Direct detection and identification of volatile organic-compounds dissolved in organic-solvents by reversed-phase membrane introduction tandem mass-spectrometry. Anal Chem 64, 1205–1211.CrossRefGoogle Scholar
  7. 7.
    Tu, C., Wynns, G. C., McMurray, R. E., Silverman, D. N. (1978) CO2 kinetics in red-cell suspensions measured by O-18 exchange. J Biol Chem 253, 8178–8184.PubMedGoogle Scholar
  8. 8.
    Itada, N., Forster, R. E. (1977) Carbonic-anhydrase activity in intact red blood-cells measured with O-18 exchange. J Biol Chem 252, 3881–3890.PubMedGoogle Scholar
  9. 9.
    Gerster, R. (1971) Kinetics of oxygen exchange between gaseous C18O2 and water. Int J Appl Radiat Isot 22, 339–348.CrossRefGoogle Scholar
  10. 10.
    Silverman, D. N. (1982) Carbonic anhydrase: oxygen-18 exchange catalyzed by an enzyme with rate-contributing proton-transfer steps. Methods Enzymol 87, 732–752.PubMedCrossRefGoogle Scholar
  11. 11.
    Trushina, E. V., Clarke, N. J., Benson, L. M., Tomlinson, A. J., McMurray, C. T., Naylor, S. (1998) A miniaturized membrane inlet mass spectrometry interface for analysis of nitric oxide in human plasma. Rapid Commun Mass Spectrom 12, 985–987.PubMedCrossRefGoogle Scholar
  12. 12.
    Calvo, K. C., Weisenberger, C. R., Anderson, L. B., Klapper, M. H. (1981) Permeable membrane – mass-spectrometric measurement of reaction-kinetics. Anal Chem 53, 981–985.CrossRefGoogle Scholar
  13. 13.
    Conrath, U., Amoroso, G., Kohle, H., Sultemeyer, D. F. (2004) Non-invasive online detection of nitric oxide from plants and some other organisms by mass spectrometry. Plant J 38, 1015–1022.PubMedCrossRefGoogle Scholar
  14. 14.
    Tu, C. K., Swenson, E. R., Silverman, D. N. (2007) Membrane inlet for mass spectrometric measurement of nitric oxide. Free Radic Biol Med 43, 1453–1457.PubMedCrossRefGoogle Scholar
  15. 15.
    Tu, C. K., Mikulski, R., Swenson, E. R., Silverman, D. N. (2009) Reactions of nitrite with hemoglobin measured by membrane inlet mass spectrometry. Free Radic Biol Med 46, 14–19.PubMedCrossRefGoogle Scholar
  16. 16.
    Lide, D. R. (1998) CRC Handbook of Chemistry and Physics. CRC-Press, Boca Raton, FL.Google Scholar
  17. 17.
    Garside, C. (1982) A chemi-luminescent technique for the determination of nanomolar concentrations of nitrate and nitrite in sea-water. Marine Chem 11, 159–167.CrossRefGoogle Scholar
  18. 18.
    Hrabie, J. A., Klose, J. R., Wink, D. A., Keefer, L. K. (1993) New nitric oxide-releasing zwitterions derived from polyamines. J Org Chem 58, 1472–1476.CrossRefGoogle Scholar
  19. 19.
    Samouilov, A., Kuppusamy, P., Zweier, J. L. (1998) Evaluation of the magnitude and rate of nitric oxide production from nitrite in biological systems. Arch Biochem Biophys 357, 1–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Huang, K., Keszler, A., Patel, N., Patel, R., Gladwin, M., Kim-Shapiro, D., et al. (2005) The reaction between nitrite and deoxyhemoglobin: reassessment of reaction kinetics and stoichiometry. J Biol Chem 35, 31126–31131.CrossRefGoogle Scholar
  21. 21.
    Singel, D. J., Stamler, J. S. (2005) Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol 67, 99–145.PubMedCrossRefGoogle Scholar
  22. 22.
    Doyle, M. P., Pickering, R. A., DeWeert, T. M., Hoekstra, J. W., Pater, D. (1981) Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites. J Biol Chem 256, 12393–12398.PubMedGoogle Scholar
  23. 23.
    Doyle, M. P., Hoekstra, J. W. (1981) Oxidation of nitrogen-oxides by bound dioxygen in hemoproteins. J Inorg Biochem 14, 351–358.PubMedCrossRefGoogle Scholar
  24. 24.
    Herold, S., Exner, M., Nauser, T. (2001) Kinetic and mechanistic studies of the NO center dot-mediated oxidation of oxymyoglobin and oxyhemoglobin. Biochemistry 40, 3385–3395.PubMedCrossRefGoogle Scholar
  25. 25.
    Herold, S., Rock, G. (2005) Mechanistic studies of the oxygen-mediated oxidation of nitrosylhemoglobin. Biochemistry 44, 6223–6231.PubMedCrossRefGoogle Scholar
  26. 26.
    Basu, S., Grubina, R., Huang, J., Conradie, J., Huang, Z., Jeffers, A., et al. (2007) Catalytic generation of N2O3 by the concerted nitrite reductase and anhydrase activity of hemoglobin. Nat Chem Biol 3, 785–794.PubMedCrossRefGoogle Scholar
  27. 27.
    Li, H. T., Cui, H. M., Kundu, T. K., Alzawahra, W., Zweier, J. L. (2008) Nitric oxide production from nitrite occurs primarily in tissues not in the blood – critical role of xanthine oxidase and aldehyde oxidase. J Biol Chem 283, 17855–17863.PubMedCrossRefGoogle Scholar
  28. 28.
    Southan, G. J., Srinivasan, A. (1998) Nitrogen oxides and hydroxyguanidines: formation of donors of nitric and nitrous oxides and possible relevance to nitrous oxide formation by nitric oxide synthase. Nitric Oxide Biol Ch 2, 270–286.CrossRefGoogle Scholar
  29. 29.
    Lloyd, D., Thomas, K., Price, D., ONeil, B., Oliver, K., Williams, T. N. (1996) A membrane-inlet mass spectrometer miniprobe for the direct simultaneous measurement of multiple gas species with spatial resolution of 1 mm. J Microbiol Methods 25, 145–151.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of FloridaGainesvilleUSA

Personalised recommendations