Advertisement

Determination of S-Nitrosothiols in Biological Fluids by Chemiluminescence

  • Enika NagababuEmail author
  • Joseph M. Rifkind
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 704)

Abstract

S-nitrosothiols present in nanomolar concentrations in cells and body fluids play an important role in vasodilation, in preventing platelet aggregation, leukocyte adhesion, and for cellular signaling. However, because of the low levels of s-nitrosothiols and interference with other nitric oxide species, reliable assays that measure both high molecular weight and low molecular weight s-nitrosothiols in plasma and red blood cells have been difficult to develop. We have previously developed a sensitive method using Cu(II)-ascorbic acid at a neutral pH, which was specific for s-nitrosothiols without interference of nitrite or other NOx species. However, due to neutral pH foaming, this method was not suitable for determinations in plasma or red blood cells with high protein content. This method has now been modified by using copper (II) chloride (CuCl2) and ascorbic acid in glacial acetic acid. The low pH solves the foaming problem. However, protonation of nitrite under acidic conditions facilitates the formation of s-nitrosothiols. For this method to specifically measure s-nitrosothiols in the sample, the unreacted thiols are blocked by reacting with N-ethylmaleimide and nitrite is blocked by reacting with acidified sulfanilamide before being analyzed by chemiluminescence. Using this method, s-nitrosothiols have been determined in the range of 2 nM to 26 nM (mean ± SE = 10.18±2.1) in plasma and up to 88.1 nM (mean ± SE = 51.27 ± 10.5) in red blood cells.

Key words

S-nitrosothiols nitric oxide ozone-based chemiluminescence assay plasma red blood cells 

References

  1. 1.
    Hogg, N. (2002) The biochemistry and physiology of S-nitrosothiols. Annu Rev Pharmacol Toxicol 42, 585–600.PubMedCrossRefGoogle Scholar
  2. 2.
    Kharitonov, V. G., Sundquist, A. R., Sharma, V. S. (1995) Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. J Biol Chem 270, 28158–28164.PubMedCrossRefGoogle Scholar
  3. 3.
    Ignarro, L. J., Edwards, J. C., Gruetter, D. Y., Barry, B. K., Gruetter, C. A. (1980) Possible involvement of S-nitrosothiols in the activation of guanylate cyclase by nitroso compounds. FEBS Lett 110, 275–278.PubMedCrossRefGoogle Scholar
  4. 4.
    Foster, M. W., McMahon, T. J., Stamler, J. S. (2003) S-nitrosylation in health and disease. Trends Mol Med 9, 160–168.PubMedCrossRefGoogle Scholar
  5. 5.
    Gaston, B. M., Carver, J., Doctor, A., Palmer, L. A. (2003) S-nitrosylation signaling in cell biology. Mol Interv 3, 253–263.PubMedCrossRefGoogle Scholar
  6. 6.
    Foster, M. W., McMahon, T. J., Stamler, J. S. (2003) S-nitrosylation in health and disease. Trends Mol Med 9, 160–168.PubMedCrossRefGoogle Scholar
  7. 7.
    MacArthur, P. H., Shiva, S., Gladwin, M. T. (2007) Measurement of circulating nitrite and S-nitrosothiols by reductive chemiluminescence. J Chromatogr B Analyt Technol Biomed Life Sci 851, 93–105.PubMedCrossRefGoogle Scholar
  8. 8.
    Dunham, A. J., Barkley, R. M., Sievers, R. E. (1995) Aqueous nitrite ion determination by selective reduction and gas phase nitric oxide chemiluminescence. Anal Chem 67, 220–224.PubMedCrossRefGoogle Scholar
  9. 9.
    Nagababu, E., Rifkind, J. M. (2007) Measurement of plasma nitrite by chemiluminescence without interference of S-, N-nitroso and nitrated species. Free Radic Biol Med 42, 1146–1154.PubMedCrossRefGoogle Scholar
  10. 10.
    Basu, S., Wang, X., Gladwin, M. T., Kim-Shapiro, D. B. (2008) Chemiluminescent detection of S-nitrosated proteins: comparison of tri-iodide, copper/CO/cysteine, and modified copper/cysteine methods. Methods Enzymol 440, 137–156.PubMedCrossRefGoogle Scholar
  11. 11.
    Stamler, J. S., Jaraki, O., Osborne, J., Simon, D. I., Keaney, J., Vita, J., Singel, D., Valeri, C. R., Loscalzo, J. (1992) Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 89, 7674–7677.PubMedCrossRefGoogle Scholar
  12. 12.
    Marley, R., Feelisch, M., Holt, S., Moore, K. (2000) A chemiluminescense-based assay for S-nitrosoalbumin and other plasma S-nitrosothiols. Free Radic Res 32, 1–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Fang, K., Ragsdale, N. V., Carey, R. M., MacDonald, T., Gaston, B. (1998) Reductive assays for S-nitrosothiols: implications for measurements in biological systems. Biochem Biophys Res Commun 252, 535–540.PubMedCrossRefGoogle Scholar
  14. 14.
    Nagababu, E., Ramasamy, S., Rifkind, J. M. (2006) S-nitrosohemoglobin: a mechanism for its formation in conjunction with nitrite reduction by deoxyhemoglobin. Nitric Oxide 15, 20–29.PubMedCrossRefGoogle Scholar
  15. 15.
    Yang, B. K., Vivas, E. X., Reiter, C. D., Gladwin, M. T. (2003) Methodologies for the sensitive and specific measurement of S-nitrosothiols, iron-nitrosyls, and nitrite in biological samples. Free Radic Res 37, 1–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Rassaf, T., Bryan, N. S., Kelm, M., Feelisch, M. (2002) Concomitant presence of N-nitroso and S-nitroso proteins in human plasma. Free Radic Biol Med 33, 1590–1596.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Molecular Dynamics SectionNational Institute on Aging, National Institutes of HealthBaltimoreUSA

Personalised recommendations