Nitric Oxide pp 115-133 | Cite as

Quantum Cascade Laser Technology for the Ultrasensitive Detection of Low-Level Nitric Oxide

  • Angela EliaEmail author
  • Pietro Mario Lugarà
  • Cinzia Di Franco
  • Vincenzo Spagnolo
Part of the Methods in Molecular Biology book series (MIMB, volume 704)


Several spectroscopic methods based on mid-infrared quantum cascade lasers for the ultrasensitive detection of nitric oxide have been developed with detection limit in ppbv and sub-ppbv range. We will describe here a selection of the most effective techniques, i.e., laser absorption spectroscopy, cavity-enhanced spectroscopy, photoacoustic spectroscopy, and Faraday modulation spectroscopy. For each technique, advantages and drawbacks will be underlined.

Key words

Nitric oxide detection quantum cascade lasers absorption spectroscopy cavity-enhanced spectroscopy photoacoustic spectroscopy Faraday modulation spectroscopy 



We acknowledge partial financial support from Regione Puglia – Project DM01 related with the Apulian Technological District on Mechatronics-MEDIS.


  1. 1.
    Nelson, D. D., Shorter, J. H., McManus, J. B., and Zahniser, M. S. (2002) Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer. Appl Phys B 75, 343–350.CrossRefGoogle Scholar
  2. 2.
    Weber, W. H., Remillard, T. J., Chase, R. E., Richert, J. F., Capasso, F., Gmachl, C., Hutchinson, A. L., Sivco, D. L., Baillargeon, J. N., and Cho, A. Y. (2002) Using a wavelength-modulation quantum cascade laser to measure NO concentration in the parts-per-billion range for vehicle emissions certification. Appl Spectrosc 56, 706–714.CrossRefGoogle Scholar
  3. 3.
    Wysocki, G., Kosterev, A. A., and Tittel, F. K. (2005) Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems. Appl Phys B 80, 617–625.CrossRefGoogle Scholar
  4. 4.
    Kharitonov, S. A. and Barnes, P. J. (2000) Clinical aspects of exhaled nitric oxide. Eur Respir J 16, 781–792.PubMedCrossRefGoogle Scholar
  5. 5.
    van Herpen, M. M. J. W., Bisson, S. E., Ngai, A. K. Y., and Harren, F. J. M. (2004) Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator. Appl Phys B 78, 281–286.CrossRefGoogle Scholar
  6. 6.
    Bisson, S. E., Armstrong, K. M., Kulp, T. J., and Hartings, M. (2001) Broadly tunable, mode-hop-tuned cw optical parametric oscillator based on periodically poled lithium niobate. Appl Opt 40, 6049–6055.PubMedCrossRefGoogle Scholar
  7. 7.
    Müller, F., Popp, A., Kühnemann, F., and Schiller, S. (2003) Transportable, highly sensitive photoacoustic spectrometer based on a continuous-wave dual cavity optical parametric oscillator. Opt Express 11, 2820–2825.PubMedCrossRefGoogle Scholar
  8. 8.
    Klein, M. E., Laue, C. K., Lee, D. H., Boller, K. J., and Wallenstein, R. (2000) Diode-pumped singly resonant continuous-wave optical parametric oscillator with wide continuous tuning of the near-infrared idler wave. Opt Lett 25, 490–492.PubMedCrossRefGoogle Scholar
  9. 9.
    Tittel, F. K., Richter, D., Fried, A. (2003) Mid-infrared laser applications in spectroscopy, In (Sorokina, I. T., Vodopyanov, K. L. eds.), Solid-State Mid-Infrared Laser Sources. Springer, Berlin. pp. 445–516.Google Scholar
  10. 10.
    Bisson, S. E., Kulp, T. J., Levi, O., Harris, J. S., and Fejer, M. M. (2006) Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs. Appl Phys B 8, 199–206.CrossRefGoogle Scholar
  11. Chen, W. D., Poullet, E., Burie, J., Boucher, D., Sigrist, M. W., Zondy, J. J., Isaenko, L., Yelisseyev, A., and Lobanov, S.. Widely tunable continuous-wave mid-infrared radiation (5.5–11 μm) by difference-frequency generation in LiInS2 crystal. Appl Opt 44, 4123–4129.Google Scholar
  12. 12.
    Richter, D. and Weibring, P. (2006) Ultra-high precision mid-IR spectrometer I: design and analysis of an optical fiber pumped difference-frequency generation source. Appl Phys B 82, 479–486.CrossRefGoogle Scholar
  13. 13.
    Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson, A. L., and Cho, A. Y. (1994) Quantum cascade laser. Science 264, 553–556.PubMedCrossRefGoogle Scholar
  14. 14.
    Beck, M., Hofstetter, D., Aellen, T., Faist, J., Oesterle, U., Ilegems, M., Gini, E., and Melchior, H. (2002) Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science 295, 301–305.PubMedCrossRefGoogle Scholar
  15. 15.
    Yu, J. S., Slivken, S., Evans, A., Doris, L., and Razeghi, M. (2003) High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature. Appl Phys Lett 83, 2503–2505.CrossRefGoogle Scholar
  16. 16.
    Gmachl, C., Faist, J., Baillargeon, J. N., Capasso, F., Sirtori, C., Sivco, D. L., and Cho, A. Y. (1997) Complex-coupled quantum cascade distributed-feedback laser. Photon Technol Lett 9, 1090–1092.CrossRefGoogle Scholar
  17. 17.
    Kohler, R., Gmachl, C., Tredicucci, A., Capasso, F., Sivco, D. L., Chu, S. N. G., and Cho, A. Y. (2000) Single-mode tunable, pulsed, and continuous wave quantum-cascade distributed feedback lasers at 4.6–4.7 μm. Appl Phys Lett 76, 1092–1094.CrossRefGoogle Scholar
  18. 18.
    DFB CW Room-Temperature Lasers. Available online:, Jul 2009.
  19. 19.
    Tunable Mid-IR External Cavity Lasers. Available online:, Jul 2009.
  20. 20.
    Yu, J. S., Slivken, S., Evans, A., Darvish, S. R., Nguyen, J., and Razeghi, M. (2006) High-power ∼ 9.5 μm quantum-cascade lasers operating above room temperature in continuous-wave mode. Appl Phys Lett 88, 091113–091115.CrossRefGoogle Scholar
  21. 21.
    Maulini, R., Beck, M., Faist, J., and Gini, E. (2004) Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers. Appl Phys Lett 84, 1659–1661.CrossRefGoogle Scholar
  22. 22.
    Wysocki, G., Curl, R. F., Tittel, F. K., Maulini, R., Bulliard, J. M., and Faist, J. (2005) Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications. Appl Phys B 81, 769–777.CrossRefGoogle Scholar
  23. 23.
    White, J. U. (1942) Long optical paths of large aperture. J Opt Soc Am 32, 285–288.CrossRefGoogle Scholar
  24. 24.
    Pilston, R. G. and White, J. U. (1954) A long path gas absorption cell. J Opt Soc Am 44, 572–573.CrossRefGoogle Scholar
  25. 25.
    Herriott, D., Kogelnik, H., and Kompfner, R. (1964) Off-axis paths in spherical mirror interferometers. Appl Opt 3, 523–526.CrossRefGoogle Scholar
  26. 26.
    McManus, J. B., Kebabian, P. L., and Zahniser, M. S. (1995) Astigmatic mirror multi-pass absorption cells for long-path length spectroscopy. Appl Opt 34, 3336–3348.PubMedCrossRefGoogle Scholar
  27. 27.
    Moeskops, B. W. M., Critescu, S. M., and Harren, F. J. M. (2006) Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser. Opt Lett 31, 823–825.PubMedCrossRefGoogle Scholar
  28. 28.
    McManus, J. B., Nelson, D. D., Herndon, S. C., Shorter, J. H., Zahniser, M. S., Blaser, S., Hvozdara, L., Muller, A., Giovannini, M., and Faist, J. (2006) Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1. Appl Phys B 85, 235–241.CrossRefGoogle Scholar
  29. 29.
    Kasyutich, V. L., Holdsworth, R. J., and Martin, P. A. (2008) Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO. Appl Phys B 92, 271–279.CrossRefGoogle Scholar
  30. 30.
    Romanini, D., Kachanov, A. A., Sadeghi, N., and Stoeckel, F. (1997) CW cavity ring down spectroscopy. Chem Phys Lett 264, 316–322.CrossRefGoogle Scholar
  31. 31.
    Paldus, B. A., Harb, C. C., Spence, T. G., Zare, R. N., Gmachl, C., Capasso, F., Sivco, D. L., Baillargeon, J. N., Hutchinson, A. L., and Cho, A. Y. (2000) Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers. Opt Lett 25, 666–668.PubMedCrossRefGoogle Scholar
  32. 32.
    Kosterev, A., Malinovsky, A. L., Tittel, F. K., Gmachl, C., Capasso, F., Sivco, D. L., Baillargeon, J. N., Hutchinson, A. L., and Cho, A. Y. (2001) Cavity ringdown spectroscopic detection of nitric oxide with continuous-wave quantum-cascade laser. Appl Opt 40, 5522–5529.PubMedCrossRefGoogle Scholar
  33. 33.
    Menzel, L., Kosterev, A. A., Curl, R. F., Tittel, F. K., Gmachl, C., Capasso, F., Sivco, D. L., Baillargeon, J. N., Hutchinson, A. L., Cho, A. Y. et al. (2001) Spectroscopic detection of biological NO with a quantum cascade laser. Appl Phys B 72, 859–863.PubMedCrossRefGoogle Scholar
  34. 34.
    Bakhirkin, Y. A., Kosterev, A. A., Roller, C., Curl, R. F., and Tittel, F. K. (2004) Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection. Appl Opt 43, 2257–2265.PubMedCrossRefGoogle Scholar
  35. 35.
    Silva, M. L., Sonnenfroh, D. M., Rosen, D. I., Allen, M. G., and O’Keefe, A. (2005) Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL. Appl Phys B 81, 705–710.CrossRefGoogle Scholar
  36. 36.
    Bakhirkin, Y. A., Kosterev, A. A., Curl, R. F., Tittel, F. K., Yarekha, D. A., Hvozdara, L., Giovannini, M., and Faist, J. (2006) Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy. Appl Phys B 82, 149–154.CrossRefGoogle Scholar
  37. 37.
    McCurdy, M. R., Bakhirkin, Y. A., and Tittel, F. K. (2006) Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide. Appl Phys B 85, 445–452.CrossRefGoogle Scholar
  38. 38.
    McCurdy, M. R., Bakhirkin, Y., Wysocki, G., and Tittel, F. K. (2007) Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy. J Biomed Optics 12, R1–R12.CrossRefGoogle Scholar
  39. 39.
    Elia, A., Lugarà, P. M., and Giancaspro, C. (2005) Photoacoustic detection of nitric oxide by use of a quantum cascade laser. Opt Lett 30, 988–990.PubMedCrossRefGoogle Scholar
  40. 40.
    Di Franco, C., Elia, A., Spagnolo, V., Scamarcio, G., Lugarà, P. M., Ieva, E., Cioffi, N., Torsi, L., Bruno, G., Losurdo, M. et al. (2009) Optical and electronic NOx sensors for applications in mechatronics. Sensors 9, 3337–3356.CrossRefGoogle Scholar
  41. 41.
    Grossel, A., Zéninari, V., Joly, L., Parvitte, B., Durry, G., and Courtois, D. (2007) Photoacoustic detection of nitric oxide with a Helmholtz resonant quantum cascade laser sensor. Infrared Phys Techn 51, 95–101.CrossRefGoogle Scholar
  42. 42.
    Spagnolo, V., Kosterev, A. A., Dong, L., Lewicki, R., and Tittel, F. K. (2010) NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser. Appl Phys B 100, 125–130.Google Scholar
  43. 43.
    Ganser, H., Horstjann, M., Suschek, C. V., Hering, P., and Mürtz, M. (2004) Online monitoring of biogenic nitric oxide with a QC laser-based Faraday modulation technique. Appl Phys B 78, 513–517.CrossRefGoogle Scholar
  44. 44.
    Sabana, H., Fritsch, T., Boyomo Onana, M., Bouba, O., Hering, P., and Mürtz, M. (2009) Simultaneous detection of 14NO and 15NO using Faraday modulation spectroscopy. Appl Phys B 96, 535–544.CrossRefGoogle Scholar
  45. 45.
    Lewicki, R., Doty, J. H., Curl, R. F., Tittel, F. K., Wysocki, G. (2009) Ultra-sensitive detection of nitric oxide at 5.33 μm using external cavity quantum cascade laser based Faraday rotation spectroscopy. Published online before print Jul 22, doi: 10.1073/pnas.0906291106.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Angela Elia
    • 1
    Email author
  • Pietro Mario Lugarà
    • 1
  • Cinzia Di Franco
    • 1
  • Vincenzo Spagnolo
    • 1
  1. 1.CNR-IFN U.O.S. di BARI, Physics DepartmentUniversity of BariBariItaly

Personalised recommendations