Skip to main content

Isolation and Culture of Porcine Adipose Tissue-Derived Somatic Stem Cells

Part of the Methods in Molecular Biology book series (MIMB,volume 702)

Abstract

Adipose tissue-derived stem cells (ASCs) have been described for a number of laboratory animals and humans. Improved culture conditions and cellular characteristics of ASCs have been identified. ASCs can self-renew and differentiate into multiple tissue lineages. Further characterization of ASCs in this manner could enhance the isolation and purification of a population of mesenchymal stem cells (MSCs) from easily obtainable adipose tissue. These stem cell populations from domestic animals, which make attractive models for transplantation studies, will be valuable for the evaluation of their efficacy in tissue regeneration applications in the future. These cells may also represent a population more easily reprogrammable during somatic cell nuclear transfer and thus expedite the development of transgenic animals for models and production of valuable pharmaceutical proteins.

Key words

  • Stem cells
  • Porcine
  • Adipose tissue
  • Cell cycle
  • Clonal expansion
  • Differentiation

This is a preview of subscription content, access via your institution.

Buying options

Protocol
EUR   44.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   93.08
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   120.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   164.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Fig. 1.
Fig. 2.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Merok, J.R. and J.L. Sherley. (2001) Breaching the kinetic barrier to in vitro somatic stem cell propagation. J Biomed Biotechnol 1: 25–27.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Klug, M.G., M.H. Soonpaa, G.Y. Koh, and L.J. Field. (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 98: 216–224.

    CrossRef  PubMed  CAS  Google Scholar 

  3. Soria, B., E. Roche, G. Berna, T. Leon-Quinto, J.A. Reig, and F. Martin. (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49: 157–162.

    CrossRef  PubMed  CAS  Google Scholar 

  4. Brustle, O., K.N. Jones, R.D. Learish, K. Karram, K. Choudhary, O.D. Wiestler, I.D. Duncan, and R.D. McKay. (1999) Embryonic stem cell-derived glial precursors: A source of myelinating transplants. Science 285: 754–756.

    CrossRef  PubMed  CAS  Google Scholar 

  5. McDonald, J.W., X.Z. Liu, Y. Qu, S. Liu, S.K. Mickey, D. Turetsky, D.I. Gottlieb, and D.W. Choi. (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5: 1410–1412.

    CrossRef  PubMed  CAS  Google Scholar 

  6. Liu, S., Y. Qu, T.J. Stewart, M.J. Howard, S. Chakrabortty, T.F. Holekamp, and J.W. McDonald. (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA 97: 6126–6131.

    CrossRef  PubMed  CAS  Google Scholar 

  7. Tsai, R.Y., R. Kittappa, and R.D. McKay. (2002) Plasticity, niches, and the use of stem cells. Dev Cell 2: 707–712.

    CrossRef  PubMed  CAS  Google Scholar 

  8. Gronthos, S., D.M. Franklin, H.A. Leddy, P.G. Robey, R.W. Storms, and J.M. Gimble. (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189: 54–63.

    CrossRef  PubMed  CAS  Google Scholar 

  9. Gimble, J. and F. Guilak. (2003) Adipose-derived adult stem cells: Isolation, characterization, and differentiation potential. Cytotherapy 5: 362–369.

    CrossRef  PubMed  Google Scholar 

  10. Friedenstein, A.J., J.F. Gorskaja, and N.N. Kulagina. (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4: 267–274.

    PubMed  CAS  Google Scholar 

  11. Rodbell, M. (1966) Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium perfringens α toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem 241: 130–139.

    PubMed  CAS  Google Scholar 

  12. Rodbell, M. and A.B. Jones. (1966) Metabolism of isolated fat cells. III. The similar inhibitory action of phospholipase C (Clostridium perfringens α toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J Biol Chem 241: 140–142.

    PubMed  CAS  Google Scholar 

  13. Broxmeyer, H.E., G. Hangoc, S. Cooper, R.C. Ribeiro, V. Graves, M. Yoder, J. Wagner, S. Vadhan-Raj, L. Benninger, and P. Rubinstein. (1992) Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci USA 89: 4109–4113.

    CrossRef  PubMed  CAS  Google Scholar 

  14. Halvorsen, Y.C., W.O. Wilkison, and J.M. Gimble. (2000) Adipose-derived stromal cells – Their utility and potential in bone formation. Int J Obes Relat Metab Disord 24(Suppl 4): S41–S44.

    CrossRef  PubMed  CAS  Google Scholar 

  15. Luria, E.A., A.F. Panasyuk, and A.Y. Friedenstein. (1971) Fibroblast colony formation from monolayer cultures of blood cells. Transfusion 11: 345–349.

    CrossRef  PubMed  CAS  Google Scholar 

  16. Kassem, M., L. Mosekilde, and E.F. Eriksen. (1993) 1,25-Dihydroxyvitamin D3 potentiates fluoride-stimulated collagen type I production in cultures of human bone marrow stromal osteoblast-like cells. J Bone Miner Res 8: 1453–1458.

    CrossRef  PubMed  CAS  Google Scholar 

  17. Rickard, D.J., M. Kassem, T.E. Hefferan, G. Sarkar, T.C. Spelsberg, and B.L. Riggs. (1996) Isolation and characterization of osteoblast precursor cells from human bone marrow. J Bone Miner Res 11: 312–324.

    CrossRef  PubMed  CAS  Google Scholar 

  18. Guilak, F., K.E. Lott, H.A. Awad, Q. Cao, K.C. Hicok, B. Fermor, and J.M. Gimble. (2006) Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol 206: 229–237.

    CrossRef  PubMed  CAS  Google Scholar 

  19. Arat, S., J. Gibbons, S.J. Rzucidlo, D.S. Respess, M. Tumlin, and S.L. Stice. (2002) In vitro development of bovine nuclear transfer embryos from transgenic clonal lines of adult and fetal fibroblast cells of the same genotype. Biol Reprod 66:1768–1774.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth R. Bondioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Williams, K.J., Godke, R.A., Bondioli, K.R. (2011). Isolation and Culture of Porcine Adipose Tissue-Derived Somatic Stem Cells. In: Gimble, J., Bunnell, B. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 702. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-960-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-960-4_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-959-8

  • Online ISBN: 978-1-61737-960-4

  • eBook Packages: Springer Protocols