Skip to main content

In Vitro Adult Canine Adipose Tissue-Derived Stromal Cell Growth Characteristics

  • Protocol
  • First Online:
Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 702))

Abstract

Stromal cells are undifferentiated cells found in embryonic and adult tissues. Adult mesenchymal stromal cells (MSCs) possess the properties of self renewal, long-term viability, multipotentiality, and immune privilege, which make them attractive candidates for regenerative medicine applications. In order to develop targeted adult stromal cell therapies for diseased and injured tissues in animals and humans, it is essential to have large-animal models. The dog represents not only a patient population, but is also a valuable experimental model. The dog has contributed significantly to the understanding of various human diseases such as genetic and musculoskeletal disorders. In order to optimize the use of stromal cell therapy in the dog as a patient or disease model, a comprehensive characterization of the cells is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weissman, I.L. (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287, 1442–1446.

    Article  PubMed  CAS  Google Scholar 

  2. Caplan, A.I. (1991) Mesenchymal stem-cells. J Orthop Res 9, 641–650.

    Article  PubMed  CAS  Google Scholar 

  3. Caplan, A.I. and Bruder, S.P. (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7, 259–264.

    Article  PubMed  CAS  Google Scholar 

  4. Hu, Y., Liao, L.M., Wang, Q., Ma, L., Ma, G., Jiang, X., et al. (2003) Isolation and identification of mesenchymal stem cells from human fetal pancreas. J Lab Clin Med 141, 342–349.

    Article  PubMed  CAS  Google Scholar 

  5. Jiang, Y., Vaessena, B., Lenvik, T., Blackstad, M., Reyes, M., and Verfaillie, C.M. (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30, 896–904.

    Article  PubMed  CAS  Google Scholar 

  6. Meirelles, L.D.S., Chagastelles, P.C., and Nardi, N.B. (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119, 2204–2213.

    Article  CAS  Google Scholar 

  7. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  8. Duan, Y., Catana, A., Meng, Y., Yamamato, N., He, S., Gupta, S., et al. (2007) Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells 25, 3058–3068.

    Article  PubMed  CAS  Google Scholar 

  9. Bocelli-Tyndall, C., Bracci, L., Spagnoli, G., Braccini, L., Bouchenaki, M., Ceredig, R., et al. (2007) Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro. Rheumatology (Oxford) 46, 403–408.

    Article  CAS  Google Scholar 

  10. Kim, S.J., Cho, H.H., Kim, Y.J., Seo, S.Y., Kim, H.N., Lee, J.B., et al. (2005) Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice. Biochemical and Biophysical Research Communications 329, 25–31.

    Article  PubMed  CAS  Google Scholar 

  11. Neupane, M., Chang, C.C., Kiupel, M., and Yuzbasiyan-Gurkan, V. (2008) Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Eng Part A 14, 1007–1015

    Google Scholar 

  12. Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., et al. (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13, 4279–4295.

    Article  PubMed  CAS  Google Scholar 

  13. Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7, 211–228.

    Article  PubMed  CAS  Google Scholar 

  14. Dahlgren, L. (2006) Use of adipose derived stem cells in tendon and ligament injuries. Am Coll Vet Surg Symp Equine Small Anim Proc, 150–151.

    Google Scholar 

  15. Harman, R., Cowles, B., Orava, C., et al. (2006) A retrospective review of 62 cases of suspensory ligament injury in sport horses treated with adipose-derived stem and regenerative cell therapy. Proc Vet Orthop Soc.

    Google Scholar 

  16. Harman, R. (2007) Adipose-derived stem and regenerative cells improves lameness and pain in dogs with osteoarthritis: a summary of results from three clinical trials. Stem Cells 25, 3279.

    Google Scholar 

  17. Black, L.L., Gaynor, J., Gahring, D., Adams, C., Aron, D., Harman, S., et al. (2007) Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized, double-blinded, multicenter, controlled trial. Vet Ther 8, 272–284.

    PubMed  Google Scholar 

  18. Starkey, M.P., Scase, T.J., Mellersh, C.S., and Murphy, S. (2005) Dogs really are man’s best friend – canine genomics has applications in veterinary and human medicine! Brief Funct Genomic Proteomic 4, 112–128.

    Article  PubMed  CAS  Google Scholar 

  19. Tsai, K.L., Clark, L.A., and Murphy, K.E. (2007) Understanding hereditary diseases using the dog and human as companion model systems. Mamm Genome 18, 444–451.

    Article  PubMed  Google Scholar 

  20. Cummings, B.J., Head, E., Ruehl, W., Milgram, N.W., and Cotman, C.W. (1996) The canine as an animal model of human aging and dementia. Neurobiol Aging 17, 259–268.

    Article  PubMed  CAS  Google Scholar 

  21. Kirchhoff, C. (2002) The dog as a model to study human epididymal function at a molecular level. Mol Hum Reprod 8, 695–701.

    Article  PubMed  CAS  Google Scholar 

  22. Sampaolesi, M., Blot, S., D’Antona, G., Granger, N., Tonlorenzi, R., and Innocenzi, A. (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444, 574–579.

    Article  PubMed  CAS  Google Scholar 

  23. Ostrander, E.A. and Giniger, E. (1997) What man’s best friend can teach us about human biology and disease. Am J Hum Genet 61, 475–480.

    Article  PubMed  CAS  Google Scholar 

  24. Ostrander, E.A., Galibert, F., and Patterson, D.F. (2000) Canine genetics comes of age. Trends Genet 16, 205.

    Article  PubMed  CAS  Google Scholar 

  25. Aust, L., Devlin, B., Foster, S.J., Halvorsen, Y.D., Hicok, K., du Laney, T., et al. (2004) Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6, 7–14.

    Article  PubMed  CAS  Google Scholar 

  26. Rainaldi, G., Pinto, B., Piras, A., Vatteroni, L., Simi, S., and Citti, L. (1991) Reduction of proliferative heterogeneity of Chef18 Chinese-Hamster cell-line during the progression toward tumorigenicity. In Vitro Cell Dev Biol 27, 949–952.

    Article  Google Scholar 

  27. Vidal, M.A., Kilroy, G.E., Johnson, J.R., Lopez, M.J., Moore, R.M., and Gimble, J.M. (2006) Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity. Vet Surg 35, 601–610.

    Article  PubMed  Google Scholar 

  28. Vidal, M.A., Kilroy, G.E., Lopez, M.J., Johnson, J.R., Moore, R.M., and Gimble, J.M. (2007) Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 36, 613–622.

    Article  PubMed  Google Scholar 

  29. Chomczynski, P. and Mackey, K. (1995) Modification of the Tri-ReagentTm procedure for isolation of RNA from polysaccharide-rich and proteoglycan-rich sources. Biotechniques 19, 942–945.

    PubMed  CAS  Google Scholar 

  30. Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal Biochem 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  31. Stegeman, H. and Stalder, K. (1967) Determination of hydroxyproline. Clin Chim Acta 18, 267.

    Article  Google Scholar 

  32. Labarca, C. and Paigen, K. (1980) Simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102, 344–352.

    Article  PubMed  CAS  Google Scholar 

  33. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265–275.

    PubMed  CAS  Google Scholar 

  34. Ratcliffe, A., Billingham, M.E., Saed-Nejad, F., Muir, F., and Hardingham, T.E. (1992) Increased release of matrix components from articular-cartilage in experimental canine osteoarthritis. J Orthop Res 10, 350–358.

    Article  PubMed  CAS  Google Scholar 

  35. Ratcliffe, A., Doherty, M., Maini, R.N., et al. (1988) Increased concentrations of proteoglycan components in the synovial-fluids of patients with acute but not chronic joint disease. Ann Rheum Dis 47, 826–832.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the members of the Laboratory for Equine and Comparative Orthopedic Research at Louisiana State University, School of Veterinary Medicine for their advice and technical assistance. This project was funded by the National Institutes of Health Institute of Arthritis and Musculoskeletal and Skin Disease Grant #K01-AR002174.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Spencer, N.D., Lopez, M.J. (2011). In Vitro Adult Canine Adipose Tissue-Derived Stromal Cell Growth Characteristics. In: Gimble, J., Bunnell, B. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 702. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-960-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-960-4_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-959-8

  • Online ISBN: 978-1-61737-960-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics