Skip to main content

Telomere Truncation in Plants

  • Protocol
  • First Online:
  • 2532 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 701))

Abstract

Telomeres are highly repetitive sequences at the ends of chromosomes that act as protection structure for chromosome stability. The integration of telomere sequences into the genome by genetic transformation can create chromosome instability because the integrated telomere sequences tend to form de novo telomeres at the site of integration. Thus, telomere repeats can be used to generate minichromosomes by telomere-mediated chromosome truncation in both plants and animals for chromosome studies as well as the applications in genetic engineering as engineered minichromosomes or artificial chromosomes. This protocol describes the procedure for telomere truncation of maize chromosomes by genetic transformation of telomere-containing constructs by both Agrobacterium- and biolistic-mediated transformations.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Basu, J., and Willard, H. F. (2005) Artificial and engineered chromosomes: non-integrating vectors for gene therapy. Trends Mol. Med. 11, 251–8.

    Article  PubMed  CAS  Google Scholar 

  2. Yu, W., Han, F., and Birchler, J. A. (2007) Engineered minichromosomes in plants. Curr. Opin. Biotechnol. 18, 425–31.

    Article  PubMed  CAS  Google Scholar 

  3. Farr, C., Fantes, J., Goodfellow, P., and Cooke, H. (1991) Functional reintroduction of human telomeres into mammalian cells. Proc. Natl Acad. Sci. USA 88, 7006–10.

    Article  PubMed  CAS  Google Scholar 

  4. Barnett, M. A., Buckle, V. J., Evans, E. P., Porter, A. C., Rout, D., Smith, A. G., and Brown, W. R. (1993) Telomere directed fragmentation of mammalian chromosomes. Nucleic Acids Res. 21, 27–36.

    Article  PubMed  CAS  Google Scholar 

  5. Farr, C. J., Bayne, R. A., Kipling, D., Mills, W., Critcher, R., and Cooke, H. J. (1995) Generation of a human X-derived mini­chromosome using telomere-associated chromosome fragmentation. EMBO J. 14, 5444–54.

    PubMed  CAS  Google Scholar 

  6. Heller, R., Brown, K. E., Burgtorf, C., and Brown, W. R. (1996) Mini-chromosomes derived from the human Y chromosome by telomere directed chromosome breakage. Proc. Natl Acad. Sci. USA 93, 7125–30.

    Article  PubMed  CAS  Google Scholar 

  7. Mills, W., Critcher, R., Lee, C., and Farr, C. J. (1999) Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40. Hum. Mol. Genet. 8, 751–61.

    Article  PubMed  CAS  Google Scholar 

  8. Yang, J. W., Pendon, C., Yang, J., Haywood, N., Chand, A., and Brown, W. R. (2000) Human mini-chromosomes with minimal centromeres. Hum. Mol. Genet. 9, 1891–902.

    Article  PubMed  CAS  Google Scholar 

  9. Saffery, R., Wong, L. H., Irvine, D. V., Bateman, M. A., Griffiths, B., Cutts, S. M., Cancilla, M. R., Cendron, A. C., Stafford, A. J., and Choo, K. H. (2001) Construction of neocentromere-based human minichromosomes by telomere-associated chromosomal truncation. Proc. Natl Acad. Sci. USA 98, 5705–10.

    Article  PubMed  CAS  Google Scholar 

  10. Richards, E. J., and Ausubel, F. M. (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53,127–36.

    Article  PubMed  CAS  Google Scholar 

  11. Yu, W., Lamb, J. C., Han, F., and Birchler, J. A. (2006) Telomere-mediated chromosomal truncation in maize. Proc. Natl Acad. Sci. USA 103, 17331–6.

    Article  PubMed  CAS  Google Scholar 

  12. Yu, W., Han, F., Gao, Z., Vega, J. M., and Birchler, J. A. (2007) Construction and behavior of engineered minichromosomes in maize. Proc. Natl Acad. Sci. USA 104, 8924–9.

    Article  PubMed  CAS  Google Scholar 

  13. Frame, B. R., Shou, H., Chikwamba, R. K., Zhang, Z., Xiang, C., Fonger, T. M., Pegg, S. E., Li, B., Nettleton, D. S., Pei, D., and Wang, K. (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129, 13–22.

    Article  PubMed  CAS  Google Scholar 

  14. Zhao, Z. Y., and Ranch, J. (2006) Transformation of maize via Agrobacterium tumefaciens using a binary co-integrate vector system. In: Loyola-Vargas, V. M. and Vázquez-Flota, F., Eds. 2nd edition, Methods in Molecular Biology, Plant Cell Culture Protocols. Vol 318 Humana Press, New Jersey, pp. 315–23.

    Google Scholar 

  15. Chu, C.C., Wang, C. C., Sun, C. S., Hsu, K. C., Yin, K. C., Chu, C. Y., and Bi, F. Y. (1975) Establishment of an efficient medium for anther culture of rice, through comparative experiments on the nitrogen sources. Sci. Sin. 18, 659–68.

    Google Scholar 

  16. Hood, E. E., Helmer, G. L., Fraley, R. T., and Chilton, M. D. (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168, 1291–301.

    PubMed  CAS  Google Scholar 

  17. Murashige, T., and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15, 473–97.

    Article  CAS  Google Scholar 

  18. Kato, A., Albert, P. S., Vega, J. M., and Birchler, J. A. (2006) Sensitive FISH signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech. Histochem. 81, 71–8.

    Article  PubMed  Google Scholar 

  19. Frame, B. R., Zhang, H. Z., Cocciolone S. M., Sidorenko, L. V., Dietrich, C. R., Pegg, S. E., Zhen, S., Schnable, P. S., Wang, K. (2000) Production of transgenic maize from bombarded type II callus: effect of gold particle and callus morphology on transformation ­efficiency. In Vitro Cell. Dev. Biol.-Plant 36, 21–9.

    Google Scholar 

  20. Phillips, R. R. (1994) Classification of pollen abortion in the field. The Maize Handbook, eds Freeling M, Walbot V (Springer, New York), pp297–8.

    Google Scholar 

  21. Kato, A., Lamb, J. C., and Birchler, J.A. (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc. Natl Acad. Sci. USA. 101, 13554–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This protocol was developed in James A. Birchler’s lab at the University of Missouri. The authors would like to thank Professor Birchler for his insightful advice during the protocol development.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xu, C., Yu, W. (2011). Telomere Truncation in Plants. In: Birchler, J. (eds) Plant Chromosome Engineering. Methods in Molecular Biology, vol 701. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-957-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-957-4_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-956-7

  • Online ISBN: 978-1-61737-957-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics