Skip to main content

Multiparametric Analysis, Sorting, and Transcriptional Profiling of Plant Protoplasts and Nuclei According to Cell Type

  • Protocol
  • First Online:
Flow Cytometry Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 699))

Abstract

Flow cytometry has been employed for the analysis of higher plants for approximately the last 30 years. For the angiosperms, ∼500,000 species, itself a daunting number, parametric measurements enabled through the use of flow cytometers started with basic descriptors of the individual cells and their contents, and have both inspired the development of novel cytometric methods that subsequently have been applied to organisms within other kingdoms of life, and adopted cytometric methods devised for other species, particularly mammals. Higher plants offer unique challenges in terms of flow cytometric analysis, notably the facts that their organs and tissues are complex three-dimensional assemblies of different cell types, and that their individual cells are, in general, larger than those of mammals.

This chapter provides an overview of the general types of parametric measurement that have been applied to plants, and provides detailed methods for selected examples based on the plant model Arabidopsis thaliana. These illustrate the use of flow cytometry for the analysis of protoplasts and nuclear DNA contents (genome size and the cell cycle). These are further integrated with measurements focusing on specific cell types, based on transgenic expression of Fluorescent Proteins (FPs), and on analysis of the spectrum of transcripts found within protoplasts and nuclei. These measurements were chosen in particular to illustrate, respectively, the issues encountered in the flow analysis and sorting of large biological cells, typified by protoplasts; how to handle flow analyses under conditions that require processing of large numbers of samples in which the individual samples contain only a very small minority of objects of interest; and how to deal with exceptionally small amounts of RNA within the sorted samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bell, P. R. and Helmsley, A. R. (2000) Green Plants: Their Origin and Diversity. Cambridge University Press, Cambridge, p. 361.

    Google Scholar 

  2. Harkins, K. R. and Galbraith, D. W. (1984) Flow sorting and culture of plant protoplasts. Physiol Plant 60, 43–52.

    Article  Google Scholar 

  3. Galbraith, D. W. (1990) Isolation and flow cytometric characterization of plant protoplasts. Methods Cell Biol 33, 527–547.

    Article  CAS  Google Scholar 

  4. Galbraith, D. W., Bartos, J., and Dolezel, J. (2005) Flow cytometry and cell sorting in plant biotechnology. In Flow Cytometry in Biotechnology (Sklar, L.A., ed.), Oxford University Press, New York, pp. 291–322.

    Google Scholar 

  5. Galbraith, D. W., Grebenok, R. J., Lambert, G. M., and Sheen, J. (1995) Flow cytometric analysis of transgene expression in higher plants: green fluorescent protein. Methods Cell Biol 50, 3–12.

    Article  CAS  Google Scholar 

  6. Sheen, J., Hwang, S., Niwa, Y., Kobayashi, H., and Galbraith, D. W. (1995) Green fluorescent protein as a new vital marker in plant cells. Plant J 8, 777–784.

    Article  CAS  Google Scholar 

  7. Galbraith, D. W., Herzenberg, L. A., and Anderson, M. (1999) Flow cytometric analysis of transgene expression in higher plants: green fluorescent protein. Methods Enzymol 320, 296–315.

    Article  Google Scholar 

  8. Birnbaum, K., Shasha, D. E., Wang, J. Y., Jung, J. W., Lambert, G. M., Galbraith, D. W., and Benfey, P. N. (2003) A gene expression map of the Arabidopsis root. Science 302, 1956–1960.

    Article  CAS  Google Scholar 

  9. Birnbaum, K., Jung, J. W., Wang, J. Y., Lambert, G. M., Hirst, J. A., Galbraith, D. W., and Benfey, P. N. (2005) Cell-type specific expression profiling in plants using fluorescent reporter lines, protoplasting, and cell sorting. Nat Methods 2, 1–5.

    Article  Google Scholar 

  10. Yadav, R. K., Girke, T., Pasala, S., Xie, M. T., and Reddy, V. (2009) Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci U S A 106, 4941–4946.

    Article  CAS  Google Scholar 

  11. Sheen, J. (2002) A transient expression assay using Arabidopsis mesophyll protoplasts. http://genetics.mgh.harvard.edu/sheenweb/

  12. Petersson, S. V., Johansson, A. I., Kowalczyk, M., Makoveychuk, A., Wang, J. Y., Moritz, T., Grebe, M., Benfey, P. N., Sandberg, G., and Ljung, K (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21, 1659–1668.

    Article  CAS  Google Scholar 

  13. Galbraith, D. W., Harkins, K. R., and Jefferson, R. A. (1988) Flow cytometric characterization of the chlorophyll contents and size distributions of plant protoplasts. Cytometry 9, 75–83.

    Article  CAS  Google Scholar 

  14. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  CAS  Google Scholar 

  15. Snapp, E. L. (2009) Fluorescent proteins: a cell biologist’s user guide. Trends Cell Biol 19, 649–655.

    Article  CAS  Google Scholar 

  16. Berg, R. H. and Beachy, R. N. (2008) Fluorescent protein applications in plants. Methods Cell Biol 85, 153–177.

    Article  CAS  Google Scholar 

  17. Galbraith, D. W. (2004) The rainbow of fluorescent proteins. Methods Cell Biol 75, 153–169.

    Article  CAS  Google Scholar 

  18. Nelson, B. K., Cai, X., and Nebenfuehr, A. (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51, 1126–1136.

    Article  CAS  Google Scholar 

  19. Millar, A. H., Carrie, C., Pogson, B., and Whelan, J. (2009) Exploring the function-location nexus: using multiple lines of evidence in defining the subcellular location of plant proteins. Plant Cell 21, 1625–1631.

    Article  CAS  Google Scholar 

  20. Grebenok, R. J., Pierson, E. A., Lambert, G. M., Gong, F. -C., Afonso, C. L., Haldeman-Cahill, R., Carrington, J. C., and Galbraith, D. W. (1997) Green-fluorescent protein fusions for efficient characterization of nuclear localization signals. Plant J 11, 573–586.

    Article  CAS  Google Scholar 

  21. Grebenok, R. J., Lambert, G. M., and Galbraith, D. W. (1997) Characterization of the targeted nuclear accumulation of GFP within the cells of transgenic plants. Plant J 12, 685–696.

    Article  CAS  Google Scholar 

  22. Chytilova, E., Macas, J., Sliwinska, E., Rafelski, S., Lambert, G. M., and Galbraith, D. W. (2000) Nuclear dynamics in Arabidopsis thaliana. Mol Biol Cell 11, 2733–2741.

    CAS  Google Scholar 

  23. Zhang, C. Q., Gong, F. C., Lambert, G. M., and Galbraith, D. W. (2005) Cell type-specific characterization of nuclear DNA contents within complex tissues and organs. Plant Methods 1, 7, doi:10.1186/1746-4811-1-7.

    Article  CAS  Google Scholar 

  24. Zhang, C. Q., Barthelson, R. A., Lambert, G. M., and Galbraith, D. W. (2008) Characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol 147, 30–40.

    Article  CAS  Google Scholar 

  25. Harkins, K. R., Jefferson, R. A., Kavanagh, T. A., Bevan, M. W., and Galbraith, D. W. (1990) Expression of photosynthesis-related gene fusions is restricted by cell-type in transgenic plants and in transfected protoplasts. Proc Natl Acad Sci USA 87, 816–820.

    Article  CAS  Google Scholar 

  26. Nawy, T., Lee, J. -Y., Colinas, J., Wang, J. Y., Thongrod, S. C., Malamy, J. E., Birnbaum, K., and Benfey, P. N. (2005) Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17, 1908–1925.

    Article  CAS  Google Scholar 

  27. Brady, S. M., Orlando, D. A., Lee, J. Y., Wang, J. Y., Koch, J., Dinneny, J. R., Mace, D., Ohler, U., and Benfey, P. N. (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318, 801–806.

    Article  CAS  Google Scholar 

  28. Dinneny, J. R., Long, T. A., Wang, J. Y., Jung, J. W., Mace, D., Pointer, S., Barron, C., Brady, S. M., Schiefelbein, J., and Benfey, P. N. (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320, 942–945.

    Article  CAS  Google Scholar 

  29. Bargmann, B. O. R. and Birnbaum, K. D. (2009) Positive fluorescent selection permits precise, rapid, and in-depth overexpression analysis in plant protoplasts. Plant Physiol 149, 1231–1239.

    Article  CAS  Google Scholar 

  30. Galbraith, D. W. and Lucretti, S. (2000) Large particle sorting. In Flow Cytometry and Cell Sorting, 2nd edition (Radbruch, A., ed.), Springer-Verlag, Berlin, pp. 293–317.

    Google Scholar 

  31. Harkins, K. R. and Galbraith, D. W. (1987) Factors governing the flow cytometric analysis and sorting of large biological particles. Cytometry 8, 60–71.

    Article  CAS  Google Scholar 

  32. Galbraith, D. W., Harkins, K. R., Maddox, J. R., Ayres, N. M., Sharma, D. P., and Firoozabady, E. (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049–1051.

    Article  CAS  Google Scholar 

  33. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.

    Article  CAS  Google Scholar 

  34. Deyholos, M. K. and Galbraith, D. W. (2001) High-density DNA microarrays for gene expression analysis. Cytometry 43, 229–238.

    Article  CAS  Google Scholar 

  35. Galbraith, D. W. (2006) Microarray analyses in higher plants. OMICS 10, 455–473.

    Article  CAS  Google Scholar 

  36. Wilhelm, B. T. and Landry, J. R. (2009) RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48, 249–257.

    Article  CAS  Google Scholar 

  37. Larson, D. R., Singer, R. H., and Zenklusen, D. (2009) A single molecule view of gene expression. Trends Cell Biol 19, 630–637.

    Article  CAS  Google Scholar 

  38. Applied Biosystems Technical Application Note (2008) SOLiD™ System 2.0 Library preparation protocol for the whole transcriptome analysis of a single cell.

    Google Scholar 

  39. Kurimoto, K., Yabuta, Y., Ohinata, Y., and Saitou, M. (2007) Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat Protoc 2, 739–752.

    Article  CAS  Google Scholar 

  40. Fare, T. L., Coffey, E. M., Dai, H. Y., He, Y. D. D., Kessler, D. A., Kilian, K. A., Koch, J. E., LeProust, E., Marton, M. J., Meyer, M. R., Stoughton, R. B., Tokiwa, G. Y., and Wang, Y. Q. (2003) Effects of atmospheric ozone on microarray data quality. Anal Chem 75, 4672–4675.

    Article  CAS  Google Scholar 

  41. Skibbe, D. S., Wang, X. J., Zhao, X. F., Borsuk, L. A., Nettleton, D., and Schnable, P. S. (2006) Scanning microarrays at multiple intensities enhances discovery of differentially expressed genes. Bioinformatics 22, 1863–1870.

    Article  CAS  Google Scholar 

  42. http://www.454.com/.

  43. http://www.illumina.com/.

  44. http://www3.appliedbiosystems.com/AB_Home/applicationstechnologies/SOLiD-System-Sequencing-A/index.htm.

Download references

Acknowledgments

Part of the development of the methods described in this chapter was done with support from the NSF Plant Genome program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Galbraith, D.W., Janda, J., Lambert, G.M. (2011). Multiparametric Analysis, Sorting, and Transcriptional Profiling of Plant Protoplasts and Nuclei According to Cell Type. In: Hawley, T., Hawley, R. (eds) Flow Cytometry Protocols. Methods in Molecular Biology, vol 699. Humana Press. https://doi.org/10.1007/978-1-61737-950-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-950-5_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-949-9

  • Online ISBN: 978-1-61737-950-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics