Flow Cytometry Protocols pp 371-392

Part of the Methods in Molecular Biology book series (MIMB, volume 699) | Cite as

Flow Cytometric FRET Analysis of Protein Interaction

Protocol

Abstract

Investigation of protein–protein interactions in situ in living or intact cells gains expanding importance as structure/function relationships proposed from bulk biochemistry and molecular modeling experiments require demonstration at the cellular level. Fluorescence resonance energy transfer (FRET)-based methods are excellent tools for determining proximity and supramolecular organization of biomolecules at the cell surface or inside the cell. This could well be the basis for the increasing popularity of FRET; in fact, the number of publications exploiting FRET has doubled in the past 5 years. In this chapter, we intend to provide a generally useable protocol for measuring FRET in flow cytometry. After a concise theoretical introduction, recipes are provided for successful labeling techniques and measurement approaches. The simple, quenching-based population-level measurement; the classic ratiometric, intensity-based technique providing cell-by-cell actual FRET efficiencies, and a more advanced version of the latter, allowing for cell-by-cell autofluorescence correction, are described. Finally, points of caution are given to help design proper experiments and critically interpret the results.

Key words

Fluorescence resonance energy transfer Förster resonance energy transfer Flow ­cytometry Protein interactions Molecular proximity 

References

  1. 1.
    Szöllősi, J., Damjanovich, S., and Mátyus, L. (1998) Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research. Cytometry 34, 159–79.CrossRefGoogle Scholar
  2. 2.
    Bastiaens, P. I. H. and Squire, A. (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9, 48–52.CrossRefGoogle Scholar
  3. 3.
    Clegg, R. M. (2002) FRET tells us about proximities, distances, orientations and dynamic properties. J Biotechnol 82, 177–9.Google Scholar
  4. 4.
    Vereb, G., Szöllősi, J., Matkó, J., et al. (2003) Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci U S A 100, 8053–8.CrossRefGoogle Scholar
  5. 5.
    Berney, C. and Danuser, G. (2003) FRET or No FRET: a quantitative comparison. Biophys J 84, 3992–4010.CrossRefGoogle Scholar
  6. 6.
    Förster, T. (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 6, 166–75.CrossRefGoogle Scholar
  7. 7.
    Stryer, L. and Haugland, R. P. (1967) Energy transfer: a spectroscopic ruler. Proc Nat Acad Sci U S A 58, 719–26.CrossRefGoogle Scholar
  8. 8.
    Dexter, D. L. (1953) A theory of sensitized luminescence in solids. J Chem Phys 21, 836–50.CrossRefGoogle Scholar
  9. 9.
    Jares-Erijman, E. A. and Jovin, T. M. (2003) FRET imaging. Nat Biotechnol 21, 1387–95.CrossRefGoogle Scholar
  10. 10.
    Szabó, A., Horváth, G., Szöllősi, J., and Nagy, P. (2008) Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements. Biophys J 95, 2086–96.CrossRefGoogle Scholar
  11. 11.
    Horváth, G., Petrás, M., Szentesi, G., et al. (2005) Selecting the right fluorophores and flow cytometer for fluorescence resonance energy transfer measurements. Cytometry A 65, 148–57.Google Scholar
  12. 12.
    Sebestyén, Z., Nagy, P., Horváth, G., et al. (2002) Long wavelength fluorophores and cell-by-cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual-laser benchtop flow cytometer. Cytometry 48, 124–35.CrossRefGoogle Scholar
  13. 13.
    Szentesi, G., Horváth, G., Bori, I., et al. (2004) Computer program for determining fluorescence resonance energy transfer efficiency from flow cytometric data on a cell-by-cell basis. Comput Methods Programs Biomed 75, 201–11.CrossRefGoogle Scholar
  14. 14.
    Szöllősi, J., Trón, L., Damjanovich, S., Helliwell, S. H., Arndt-Jovin, D., and Jovin, T. M. (1984) Fluorescence energy transfer measurements on cell surfaces: a critical comparison of steady-state fluorimetric and flow cytometric methods. Cytometry 5, 210–6.CrossRefGoogle Scholar
  15. 15.
    Damjanovich, S., Trón, L., Szöllősi, J., et al. (1983) Distribution and mobility of murine histocompatibility H-2Kk antigen in the cytoplasmic membrane. Proc Natl Acad Sci U S A 80, 5985–9.CrossRefGoogle Scholar
  16. 16.
    Trón, L., Szöllősi, J., Damjanovich, S., Helliwell, S. H., Arndt-Jovin, D. J., and Jovin, T. M. (1984) Flow cytometric measurement of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell-by-cell basis. Biophys J 45, 939–46.CrossRefGoogle Scholar
  17. 17.
    Nagy, P., Bene, L., Hyun, W. C., et al. (2005) Novel calibration method for flow cytometric fluorescence resonance energy transfer measurements between visible fluorescent proteins. Cytometry A 67, 86–96.Google Scholar
  18. 18.
    Dale, R. E., Eisinger, J., and Blumberg, W. E. (1979) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J 26, 161–93.CrossRefGoogle Scholar
  19. 19.
    Batard, P., Szöllősi, J., Luescher, I., Cerottini, J. C., MacDonald, R., and Romero, P. (2002) Use of phycoerythrin and allophycocyanin for fluorescence resonance energy transfer analyzed by flow cytometry: advantages and limitations. Cytometry 48, 97–105.CrossRefGoogle Scholar
  20. 20.
    Wolber, P. K. and Hudson, B. S. (1979) An analytic solution to the Forster energy transfer problem in two dimensions. Biophys J 28, 197–210.CrossRefGoogle Scholar
  21. 21.
    Dewey, T. G. and Hammes, G. G. (1980) Calculation on fluorescence resonance energy transfer on surfaces. Biophys J 32, 1023–35.CrossRefGoogle Scholar
  22. 22.
    Snyder, B. and Freire, E. (1982) Fluorescence energy transfer in two dimensions. A numeric solution for random and nonrandom distributions. Biophys J 40, 137–48.CrossRefGoogle Scholar
  23. 23.
    Szöllősi, J., Damjanovich, S., Balázs, M., et al. (1989) Physical association between MHC class I and class II molecules detected on the cell surface by flow cytometric energy transfer. J Immunol 143, 208–13.Google Scholar
  24. 24.
    Kenworthy, A. K. and Edidin, M. (1998) Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J Cell Biol 142, 69–84.CrossRefGoogle Scholar
  25. 25.
    Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. (2005) A guide to choosing fluorescent proteins. Nat Methods 2, 905–9.CrossRefGoogle Scholar
  26. 26.
    Patterson, G. H., Piston, D. W., and Barisas, B. G. (2000) Forster distances between green fluorescent protein pairs. Anal Biochem 284, 438–40.CrossRefGoogle Scholar
  27. 27.
    Ai, H. W., Hazelwood, K. L., Davidson, M. W., and Campbell, R. E. (2008) Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat Methods 5, 401–3.CrossRefGoogle Scholar
  28. 28.
    Shcherbo, D., Souslova, E. A., Goedhart, J., et al. (2009) Practical and reliable FRET/FLIM pair of fluorescent proteins. BMC Biotechnol 9, 24.CrossRefGoogle Scholar
  29. 29.
    Sun, Y., Booker, C. F., Kumari, S., Day, R. N., Davidson, M., and Periasamy, A. (2009) Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser. J Biomed Opt 14, 054009.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • György Vereb
    • 1
  • Péter Nagy
    • 1
  • János Szöllo˝si
    • 1
  1. 1.Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, Medical and Health Science CenterUniversity of DebrecenDebrecenHungary

Personalised recommendations