A Method to Isolate and Culture Expand Human Dental Pulp Stem Cells

  • Stan Gronthos
  • Agnieszka Arthur
  • P. Mark Bartold
  • Songtao Shi
Part of the Methods in Molecular Biology book series (MIMB, volume 698)


Dentinal repair in teeth occurs through the activity of specialized cells known as odontoblasts that are thought to be maintained by a precursor population associated with the perivascular cells within dental pulp tissue. We have previously isolated candidate dental pulp stem cells (DPSC) from adult human third molars, with the ability to generate clonogenic cell clusters (CFU-F: colony-forming units-fibroblastic), a high proliferation rate, and multi-potential differentiation in vitro. When cultured DPSC are transplanted into immunocompromised mice, they generated a dentin-like structure lined with human odontoblast-like cells that surrounded a pulp-like interstitial tissue, composed of collagen and a vascular network. The present protocol describes a methodology to generate highly purified preparations of human DPSC. This process involves the enzymatic digestion of fresh samples of human dental pulp tissue followed by the isolation of DPSC using magnetic bead cell separation, based on their expression of mesenchymal stem cell associated markers.

Key words

Dental pulp stem cells Dentin Teeth Mesenchymal stem cells Magnetic bead cell sorting 



This work was supported by National Health and Medical Council of Australia Project Grant #453599 and #453497.


  1. 1.
    Thesleff, I., and Aberg, T. (1999) Molecular regulation of tooth development, Bone 25, 123–125.PubMedCrossRefGoogle Scholar
  2. 2.
    Baume, L. J. (1980) The biology of pulp and dentine. A historic, terminologic-taxonomic, histologic-biochemical, embryonic and clinical survey, Monogr Oral Sci 8, 1–220.PubMedGoogle Scholar
  3. 3.
    Smith, A. J., Tobias, R. S., Cassidy, N., Begue-Kirn, C., Ruch, J. V., and Lesot, H. (1995) Influence of substrate nature and immobilization of implanted dentin matrix components during induction of reparative dentinogenesis, Connect Tissue Res 32, 291–296.PubMedCrossRefGoogle Scholar
  4. 4.
    Cox, C. F., White, K. C., Ramus, D. L., Farmer, J. B., and Snuggs, H. M. (1992) Reparative dentin: factors affecting its deposition, Quintessence Int 23, 257–270.PubMedGoogle Scholar
  5. 5.
    Murray, P. E., About, I., Lumley, P. J., Franquin, J. C., Remusat, M., and Smith, A. J. (2002) Cavity remaining dentin thickness and pulpal activity, Am J Dent 15, 41–46.PubMedGoogle Scholar
  6. 6.
    About, I., Murray, P. E., Franquin, J. C., Remusat, M., and Smith, A. J. (2001) The effect of cavity restoration variables on odontoblast cell numbers and dental repair, J Dent 29, 109–117.PubMedCrossRefGoogle Scholar
  7. 7.
    Tecles, O., Laurent, P., Zygouritsas, S., Burger, A. S., Camps, J., Dejou, J., and About, I. (2005) Activation of human dental pulp progenitor/stem cells in response to odontoblast injury, Arch Oral Biol 50, 103–108.PubMedCrossRefGoogle Scholar
  8. 8.
    Heikinheimo, K., Begue-Kirn, C., Ritvos, O., Tuuri, T., and Ruch, J. V. (1998) Activin and bone morphogenetic protein (BMP) signalling during tooth development, Eur J Oral Sci 106 Suppl 1, 167–173.PubMedGoogle Scholar
  9. 9.
    Sveen, O. B., and Hawes, R. R. (1968) Differentiation of new odontoblasts and dentine bridge formation in rat molar teeth after tooth grinding, Arch Oral Biol 13, 1399–1409.PubMedCrossRefGoogle Scholar
  10. 10.
    Butler, W. T., Ritchie, H. H., and Bronckers, A. L. (1997) Extracellular matrix proteins of dentine, Ciba Found Symp 205, 107–115.PubMedGoogle Scholar
  11. 11.
    Ruch, J. V. (1998) Odontoblast commitment and differentiation, Biochem Cell Biol 76, 923–938.PubMedCrossRefGoogle Scholar
  12. 12.
    Tecles, O., Laurent, P., Aubut, V., and About, I. (2008) Human tooth culture: a study model for reparative dentinogenesis and direct pulp capping materials biocompatibility, J Biomed Mater Res B Appl Biomater 85, 180–187.PubMedGoogle Scholar
  13. 13.
    About, I., Bottero, M. J., de Denato, P., Camps, J., Franquin, J. C., and Mitsiadis, T. A. (2000) Human dentin production in vitro, Exp Cell Res 258, 33–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Couble, M. L., Farges, J. C., Bleicher, F., Perrat-Mabillon, B., Boudeulle, M., and Magloire, H. (2000) Odontoblast differentiation of human dental pulp cells in explant cultures, Calcif Tissue Int 66, 129–138.PubMedCrossRefGoogle Scholar
  15. 15.
    Tsukamoto, Y., Fukutani, S., Shin-Ike, T., Kubota, T., Sato, S., Suzuki, Y., and Mori, M. (1992) Mineralized nodule formation by cultures of human dental pulp-derived fibroblasts, Arch Oral Biol 37, 1045–1055.PubMedCrossRefGoogle Scholar
  16. 16.
    Buurma, B., Gu, K., and Rutherford, R. B. (1999) Transplantation of human pulpal and gingival fibroblasts attached to synthetic scaffolds, Eur J Oral Sci 107, 282–289.PubMedCrossRefGoogle Scholar
  17. 17.
    Kuo, M. Y., Lan, W. H., Lin, S. K., Tsai, K. S., and Hahn, L. J. (1992) Collagen gene expression in human dental pulp cell cultures, Arch Oral Biol 37, 945–952.PubMedCrossRefGoogle Scholar
  18. 18.
    Shiba, H., Fujita, T., Doi, N., Nakamura, S., Nakanishi, K., Takemoto, T., Hino, T., Noshiro, M., Kawamoto, T., Kurihara, H., and Kato, Y. (1998) Differential effects of various growth factors and cytokines on the syntheses of DNA, type I collagen, laminin, fibronectin, osteonectin/secreted protein, acidic and rich in cysteine (SPARC), and alkaline phosphatase by human pulp cells in culture, J Cell Physiol 174, 194–205.PubMedCrossRefGoogle Scholar
  19. 19.
    Gronthos, S., Brahim, J., Li, W., Fisher, L. W., Cherman, N., Boyde, A., DenBesten, P., Robey, P. G., and Shi, S. (2002) Stem cell properties of human dental pulp stem cells, J Dent Res 81, 531–535.PubMedCrossRefGoogle Scholar
  20. 20.
    Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., and Shi, S. (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo, Proc Natl Acad Sci U S A 97, 13625–13630.PubMedCrossRefGoogle Scholar
  21. 21.
    Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., and Shi, S. (2003) SHED: stem cells from human exfoliated deciduous teeth, Proc Natl Acad Sci U S A 100, 5807–5812.PubMedCrossRefGoogle Scholar
  22. 22.
    Arthur, A., Rychkov, G., Shi, S., Koblar, S. A., and Gronthos, S. (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues, Stem Cells 26, 1787–1795.PubMedCrossRefGoogle Scholar
  23. 23.
    Nosrat, I. V., Smith, C. A., Mullally, P., Olson, L., and Nosrat, C. A. (2004) Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system, Eur J Neurosci 19, 2388–2398.PubMedCrossRefGoogle Scholar
  24. 24.
    Shi, S., and Gronthos, S. (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp, J Bone Miner Res 18, 696–704.PubMedCrossRefGoogle Scholar
  25. 25.
    Bianco, P., Riminucci, M., Gronthos, S., and Robey, P. G. (2001) Bone marrow stromal stem cells: nature, biology, and potential applications, Stem Cells 19, 180–192.PubMedCrossRefGoogle Scholar
  26. 26.
    Doherty, M. J., Ashton, B. A., Walsh, S., Beresford, J. N., Grant, M. E., and Canfield, A. E. (1998) Vascular pericytes express osteogenic potential in vitro and in vivo, J Bone Miner Res 13, 828–838.PubMedCrossRefGoogle Scholar
  27. 27.
    Fuchs, E., Tumbar, T., and Guasch, G. (2004) Socializing with the neighbors: stem cells and their niche, Cell 116, 769–778.PubMedCrossRefGoogle Scholar
  28. 28.
    Moore, K. A., and Lemischka, I. R. (2006) Stem cells and their niches, Science 311, 1880–1885.PubMedCrossRefGoogle Scholar
  29. 29.
    Sacchetti, B., Funari, A., Michienzi, S., Di Cesare, S., Piersanti, S., Saggio, I., Tagliafico, E., Ferrari, S., Robey, P. G., Riminucci, M., and Bianco, P. (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment, Cell 131, 324–336.PubMedCrossRefGoogle Scholar
  30. 30.
    Gronthos, S., Zannettino, A. C., Hay, S. J., Shi, S., Graves, S. E., Kortesidis, A., and Simmons, P. J. (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow, J Cell Sci 116, 1827–1835.PubMedCrossRefGoogle Scholar
  31. 31.
    Gronthos, S., McCarty, R., Mrozik, K., Fitter, S., Paton, S., Menicanin, D., Itescu, S., Bartold, P. M., Xian, C., and Zannettino, A. C. (2009) Heat shock protein-90 beta (Hsp90b) is expressed at the surface of multipotential mesenchymal precursor cells (MPC): generation of a novel monoclonal antibody, STRO-4, with specificity for MPC from human and ovine tissues, Stem Cells Dev 18(9), 1253–1262.PubMedCrossRefGoogle Scholar
  32. 32.
    Gronthos, S., and Zannettino, A. C. (2008) A method to isolate and purify human bone marrow stromal stem cells, Methods Mol Biol 449, 45–57.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Stan Gronthos
    • 1
  • Agnieszka Arthur
  • P. Mark Bartold
  • Songtao Shi
  1. 1.Mesenchymal Stem Cell Group, Division of Haematology, Institute of Medical and Veterinary Science/Hanson Institute/CSCRUniversity of AdelaideAdelaideAustralia

Personalised recommendations