Isolation, Culture, and Characterization of Human Umbilical Cord Stroma-derived Mesenchymal Stem Cells

Part of the Methods in Molecular Biology book series (MIMB, volume 698)

Abstract

As the collection and isolation of human bone marrow-derived mesenchymal stem cells (MSCs) require invasive and often undesirable procurement procedures, investigators have begun to seek alternative sources of human MSC including the umbilical cord stroma. Here we describe the noninvasive isolation, culture, and basic characterization of human umbilical cord stroma-derived mesenchymal stem cells (hUCS-MSCs). Although some technical and observational variations exist between laboratories, there has been a relatively common consensus regarding the immunological and functional characteristics of hUCS-MSCs. Successful in vitro and in vivo differentiation to several lineages makes these cells an invaluable stem cell source, deserving further testing as a cellular therapy or other applications in regenerative medicine. Therefore, the isolation and culture of hUCS-MSCs still need better clarification to ultimately build an optimal standard procedure among laboratories, tissue banks, and clinics.

Key words

Cell culture Cell isolation Mesenchymal stem cell Stem cell Umbilical cord stroma 

Notes

Acknowledgments

The authors would like to thank Drs. Serçin Karahüseyinoğlu and Özgür Çinar who worked as Ph.D. students to improve the described techniques with great pleasure and care. This work was partly supported by The Turkish Ministry of Industry STZ-139-2007-2.

References

  1. 1.
    Can, A., and Karahuseyinoglu, S. (2007) Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25, 2886–2895.PubMedCrossRefGoogle Scholar
  2. 2.
    Karahuseyinoglu, S., Kocaefe, C., Balci, D., Erdemli, E., and Can, A. (2008) Functional structure of adipocytes differentiated from human umbilical cord stroma-derived stem cells. Stem Cells 26, 682–691.PubMedCrossRefGoogle Scholar
  3. 3.
    Karahuseyinoglu, S., Cinar, O., Kilic, E., Kara, F., Akay, G. G., Demiralp, D. O., Tukun, A., Uckan, D., and Can, A. (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25, 319–331.PubMedCrossRefGoogle Scholar
  4. 4.
    Baksh, D., Yao, R., and Tuan, R. S. (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25, 1384–1392.PubMedCrossRefGoogle Scholar
  5. 5.
    Wang, H. S., Hung, S. C., Peng, S. T., Huang, C. C., Wei, H. M., Guo, Y. J., Fu, Y. S., Lai, M. C., and Chen, C. C. (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22, 1330–1337.PubMedCrossRefGoogle Scholar
  6. 6.
    Conconi, M. T., Burra, P., Di Liddo, R., Calore, C., Turetta, M., Bellini, S., Bo, P., Nussdorfer, G. G., and Parnigotto, P. P. (2006) CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med 18, 1089–1096.PubMedGoogle Scholar
  7. 7.
    Lu, L. L., Liu, Y. J., Yang, S. G., Zhao, Q. J., Wang, X., Gong, W., Han, Z. B., Xu, Z. S., Lu, Y. X., Liu, D., Chen, Z. Z., and Han, Z. C. (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91, 1017–1026.PubMedGoogle Scholar
  8. 8.
    Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., and Davies, J. E. (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23, 220–229.PubMedCrossRefGoogle Scholar
  9. 9.
    Kadivar, M., Khatami, S., Mortazavi, Y., Shokrgozar, M. A., Taghikhani, M., and Soleimani, M. (2006) In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Biochem Biophys Res Commun 340, 639–647.PubMedCrossRefGoogle Scholar
  10. 10.
    Campard, D., Lysy, P. A., Najimi, M., and Sokal, E. M. (2008) Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology 134, 833–848.PubMedCrossRefGoogle Scholar
  11. 11.
    Wu, L. F., Wang, N. N., Liu, Y. S., and Wei, X. (2009) Differentiation of Wharton’s jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Eng Part A 15, 2865–2873.PubMedCrossRefGoogle Scholar
  12. 12.
    Fu, Y. S., Cheng, Y. C., Lin, M. Y., Cheng, H., Chu, P. M., Chou, S. C., Shih, Y. H., Ko, M. H., and Sung, M. S. (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24, 115–124.PubMedCrossRefGoogle Scholar
  13. 13.
    Fu, Y. S., Shih, Y. T., Cheng, Y. C., and Min, M. Y. (2004) Transformation of human umbilical mesenchymal cells into neurons in vitro. J Biomed Sci 11, 652–660.PubMedCrossRefGoogle Scholar
  14. 14.
    Ma, L., Feng, X. Y., Cui, B. L., Law, F., Jiang, X. W., Yang, L. Y., Xie, Q. D., and Huang, T. H. (2005) Human umbilical cord Wharton’s Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chin Med J (Engl) 118, 1987–1993.Google Scholar
  15. 15.
    Weiss, M. L., Medicetty, S., Bledsoe, A. R., Rachakatla, R. S., Choi, M., Merchav, S., Luo, Y., Rao, M. S., Velagaleti, G., and Troyer, D. (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 24, 781–792.PubMedCrossRefGoogle Scholar
  16. 16.
    Mitchell, K. E., Weiss, M. L., Mitchell, B. M., Martin, P., Davis, D., Morales, L., Helwig, B., Beerenstrauch, M., Abou-Easa, K., Hildreth, T., Troyer, D., and Medicetty, S. (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21, 50–60.PubMedCrossRefGoogle Scholar
  17. 17.
    Friedman, R., Betancur, M., Boissel, L., Tuncer, H., Cetrulo, C., and Klingemann, H. (2007) Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biol Blood Marrow Transplant 13, 1477–1486.PubMedCrossRefGoogle Scholar
  18. 18.
    Fong, C. Y., Richards, M., Manasi, N., Biswas, A., and Bongso, A. (2007) Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reprod Biomed Online 15, 708–718.PubMedCrossRefGoogle Scholar
  19. 19.
    Li, G., Zhang, X. A., Wang, H., Wang, X., Meng, C. L., Chan, C. Y., Yew, D. T., Tsang, K. S., Li, K., Tsai, S. N., Ngai, S. M., Han, Z. C., Lin, M. C., He, M. L., and Kung, H. F. (2009) Comparative proteomic analysis of mesenchymal stem cells derived from human bone marrow, umbilical cord, and placenta: implication in the migration. Proteomics 9, 20–30.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratory for Stem Cell Science, Department of Histology and EmbryologyAnkara University School of Medicine, Ankara University Stem Cell InstituteAnkaraTurkey

Personalised recommendations