Advertisement

Isolation and Culture of Human Multipotent Stromal Cells from the Pancreas

  • Karen L. Seeberger
  • Alana Eshpeter
  • Gregory S. Korbutt
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 698)

Abstract

Mesenchymal stem cells, also termed multipotent mesenchymal stromal cells (MSCs), can be isolated from most adult tissues. Although the exact origin of MSCs expanded from the human pancreas has not been resolved, we have developed protocols to isolate and expand MSCs from human pancreatic tissue that remains after islet procurement. Similar to techniques used to isolate MSCs from bone marrow, pancreatic MSCs are isolated based on their cell adherence, expression of several cell surface antigens, and multilineage differentiation. The protocols for isolating, characterizing, and differentiating MSCs from the pancreas are presented in this chapter.

Key words

Multipotent mesenchymal stromal cells Mesenchymal stem cells Isolation Culture Differentiation Nonendocrine pancreas 

References

  1. 1.
    Dor, Y., Brown, J., Martinez, O. I., and Melton, D. A. (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46.PubMedCrossRefGoogle Scholar
  2. 2.
    Khalaileh, A., Gonen-Gross, T., Magenheim, J., Nir, T., Porat, S., Salpeter, S., Stolovich-Rain, M., Swisa, A., Weinberg, N., and Dor, Y. (2008) Determinants of pancreatic β-cell regeneration. Diabetes Obes. Metab. 10, 128–135.PubMedCrossRefGoogle Scholar
  3. 3.
    Wang, R. N., Kloppel, G., and Bouwens, L. (1995) Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia 38, 1405–1411.PubMedCrossRefGoogle Scholar
  4. 4.
    D’Alessandro, J. S., Lu, K., Fung, B. P., Colman, A., and Clarke, D. L. (2007) Rapid and efficient in vitro generation of pancreatic islet progenitor cells from nonendocrine epithelial cells in the adult human pancreas. Stem Cells Dev. 16, 75–89.PubMedCrossRefGoogle Scholar
  5. 5.
    Bonner-Weir, S., Taneja, M., Weir, G. C., Tatarkiewicz, K., Song, K. H., Sharma, A., and O’Neil, J. J. (2000) In vitro cultivation of human islets from expanded ductal tissue. PNAS 97, 7999–8004.PubMedCrossRefGoogle Scholar
  6. 6.
    Heremans, Y., Van de Casteele, C. M., in’t Veld, P., Gradwohl, G., Serup, P., Madsen, O., Pipeleers, D., and Heimberg, H. (2002) Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J. Cell Biol. 159, 303–312.PubMedCrossRefGoogle Scholar
  7. 7.
    Xu, X., D’Hoker, J., Stange, G., Bonne, S., De Leu, N., Xiao, X., Van de Casteele, M., Mellitzer, G., Ling, Z., Pipeleers, D., Bouwens, L., Scharfmann, R., Gradwohl, G., and Heimberg, H. (2008) Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197–207.PubMedCrossRefGoogle Scholar
  8. 8.
    Yato, S., Dodge, R., Akashi, T., Omer, A., Sharma, A., Weir, G. C., and Bonner-Weir, S. (2007) Differentiation of affinity-purified human pancreatic duct cells to β-cells. Diabetes 56, 1802–1809.CrossRefGoogle Scholar
  9. 9.
    Bonner-Weir, S., Inada, A., Yatoh, S., Li, W., Aye, T., Toschi, E., and Sharma, A. (2008) Transdifferentiation of pancreatic ductal cells to endocrine β-cells. Biochem. Soc. Trans. 36, 353–356.PubMedCrossRefGoogle Scholar
  10. 10.
    Inada, A., Nienaber, C., Katsuta, H., Fugitani, Y., Levine, J., Morita, R., Sharma, A., and Bonner-Weir, S. (2008) Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. PNAS 105, 19915–19919.PubMedCrossRefGoogle Scholar
  11. 11.
    Hao, E., Tyrberg, B., Itkin-Ansari, P., Lakey, J. R., Geron, I., Monosov, E. Z., Barcova, M., Mercola, M., and Levine, F. (2006) Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas. Nature Med. 12, 310–316.PubMedCrossRefGoogle Scholar
  12. 12.
    Rooman, I., Lardon, J., and Bouwens, L. (2002) Gastrin stimulates beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes 51, 686–690.PubMedCrossRefGoogle Scholar
  13. 13.
    Baeyens, L., De Breuck, S., Lardon, J., Mfopou, J. K., Rooman, I., and Bouwens, L. (2005) In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 48, 49–57.PubMedCrossRefGoogle Scholar
  14. 14.
    Baeyens, L., and Boewens, L. (2008) Can β-cells be derived from exocrine pancreas? Diabetes Obes. Metab. 10, 170–178.PubMedCrossRefGoogle Scholar
  15. 15.
    Lipsett, M. A., Castellarin, M. L., and Rosenberg, L. (2007) Acinar plasticity development of a novel in vitro model to study human acinar-to-duct-to-islet differentiation. Pancreas 34, 452–457.PubMedCrossRefGoogle Scholar
  16. 16.
    Teitelman, G. (2004) Islet-derived multipotential cells/progenitor cells. Cell Biochem. Biophys. 40, 89–102.PubMedCrossRefGoogle Scholar
  17. 17.
    Gallo, R., Gambelli, F., Gava, B., Sasdelli, F., Tellone, V., Masini, M., Marchetti, P., Dotta, F., and Sorrentino, V. (2007) Generation and expansion of multipotent mesenchymal progenitor cells from cultured human pancreatic islets. Cell Death. Differ. 14, 1860–1871.PubMedCrossRefGoogle Scholar
  18. 18.
    Eberhardt, M., Salmon, P., von Mach, M. A., Hengstler, J. G., Brulport, M., Linscheid, P., Seboek, D., Oberholzer, J., Barbero, A., Martin, I., Muller, B., Trono, D., and Zulewski, H. (2006) Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem. Biophys. Res. Commun. 345, 1167–1176.PubMedCrossRefGoogle Scholar
  19. 19.
    Gershengorn, M. C., Hardikar, A. A., Wei, C., Geras-Raaka, E., Marcus-Samuels, B., and Raaka, B. M. (2004) Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306, 2261–2264.PubMedCrossRefGoogle Scholar
  20. 20.
    Todorov, I., Omori, K., Pascual, M., Rawson, J., Nair, I., Valiente, L., Vuong, T., Matsuda, T., Orr, C., Ferreri, K., Smith, C. V., Kandeel, F., and Mullen, Y. (2006) Generation of human islets through expansion and differentiation of non-islet pancreatic cells discarded (pancreatic discard) after islet isolation. Pancreas 32, 130–138.PubMedCrossRefGoogle Scholar
  21. 21.
    Seeberger, K. L., Dufour, J. M., Shapiro, A. M., Lakey, J. R., Rajotte, R. V., Korbutt, G. S. (2006) Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Lab. Invest. 86, 141–153.PubMedCrossRefGoogle Scholar
  22. 22.
    Baertschiger, R. M., Bosco, D., Morel, P., Serre-Beinier, V., Berney, T., Buhler, L. H., and Gonelle-Gispert, C. (2008) Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development. Pancreas 37, 75–83.PubMedCrossRefGoogle Scholar
  23. 23.
    Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller I., Slaper-Cortenbach, I., Marini F. C., Deans, R. J., Krause, D. S., and Keating, A. (2005) Clarification of the nomenclature for MSC: The international society for cellular therapy position statement. Cytotherapy 7, 393–395.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee, K. D., Kuo, T. K., Whang-Peng, J., Chung, Y. F., Lin, C. T., Chou, S. H., Chen, J.R., Chen, Y. P., and Lee, O. K. (2004) In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40, 1275–1284.PubMedCrossRefGoogle Scholar
  25. 25.
    Seo, M. J., Suh, S. Y., Bae, Y. C., and Jung, J. S. (2005) Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem. Biophys. Res. Commun. 328, 258–264.PubMedCrossRefGoogle Scholar
  26. 26.
    Timper, K., Seboek, D., Eberhardt, M., Linscheid, P., Christ-Crain, M., Keller, U., Muller, B., and Zulewski, H. (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem. Biophys. Res. Commun. 341, 1135–1140.PubMedCrossRefGoogle Scholar
  27. 27.
    Battula, V. L., Bareiss, P. M., Treml, S., Conrad, S., Albert, I., Hojak, S., Abele, H., Schewe, B., Just, L., Skutella, T., and Buhring, H. (2007) Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation 75, 279–291.PubMedCrossRefGoogle Scholar
  28. 28.
    Tang, D. Q., Cao, L. Z., Burkhardt, B. R., Xia, C. Q., Litherland, S. A., Atkinson, M. A., and Yang, L. J. (2004) In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53, 1721–1732.PubMedCrossRefGoogle Scholar
  29. 29.
    Oh, S. H., Muzzonigro, T. M., Bae, S. H., LaPlante, J. M., Hatch, H. M., and Petersen, B. E. (2004) Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab. Invest. 84, 607–617.PubMedCrossRefGoogle Scholar
  30. 30.
    Russ, H. A., Bary, Y., Ravassard, P., and Efrat, S. (2008) In vitro proliferation of cells derived from adult human ß-cells revealed by cell-lineage tracing. Diabetes 57, 1575–1583.PubMedCrossRefGoogle Scholar
  31. 31.
    Atouf, F., Park, C. H., Pechhold, K., Ta, M., Choi,Y., and Lumelsky, N. L. (2007) No evidence for mouse pancreatic beta-cell epithelial-mesenchymal transition in vitro. Diabetes 56, 699–702.PubMedCrossRefGoogle Scholar
  32. 32.
    Chase, L. G., Ulloa-Montoya, F., Kidder, B. L., and Verfaillie, C. M. (2007) Islet-derived fibroblast-like cells are not derived via epithelial-mesenchymal transition from Pdx-1 or insulin-positive cells. Diabetes 56, 3–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Morton, R. A., Geras-Raaka, E., Wilson, L. M., Raaka, B. M., and Gershengorn, M. C. (2007) Endocrine precursor cells from mouse islets are not generated by epithelial-to-mesenchymal transition of mature beta cells. Mol. Cell Endocrinol. 270, 87–93.PubMedCrossRefGoogle Scholar
  34. 34.
    Kayali, A. G., Flores, L. E., Lopez, A. D., Kutlu, B., Baetge, E., Kitamura, R., Hao, E., Beattie, G. M., and Hayek, A. (2007) Limited capacity of human adult islets expanded in vitro to redifferentiate into insulin-producing beta-cells. Diabetes 56, 703–708.PubMedCrossRefGoogle Scholar
  35. 35.
    Seeberger, K. L., Eshpeter, A., Rajotte, R. V., and Korbutt, G. S., (2009) Epithelial cells within the human pancreas do not coexpress mesenchymal antigens: epithelial-mesenchymal transition is an artifact of cell culture. Lab. Invest. 89, 110–121.PubMedCrossRefGoogle Scholar
  36. 36.
    Lakey, J. R. T., Warnock, G. L., Shapiro, A. M. J., Korbutt, G. S., Ao, Z., Kneteman, N. M., and Rajotte, R. V. (1999) Intraductal collagenase delivery into the human pancreas using syringe loading or controlled perfusion. Cell Transplant. 8, 285–292.PubMedGoogle Scholar
  37. 37.
    Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.PubMedCrossRefGoogle Scholar
  38. 38.
    Pittenger, M. F., and Martin, B. J. (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 9, 9–20.CrossRefGoogle Scholar
  39. 39.
    Prockop, D. J., Phinney, D. J., and Bunnell, B. A. (2008) Mesenchymal stem cells: methods and protocols. Methods in Molecular Biology 449, Humana Press, Totowa.CrossRefGoogle Scholar
  40. 40.
    Baxter, M. A., Wynn, R. F., Jowitt, S. N., Wraith, J. E., Fairbairn, L. J., and Bellantuono, I. (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22, 675–682.PubMedCrossRefGoogle Scholar
  41. 41.
    McManus, J.F.A., and Mowry R. (1960) Staining Methods Histological and Histochemical. Paul B Hoeber, New York.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Karen L. Seeberger
  • Alana Eshpeter
  • Gregory S. Korbutt
    • 1
  1. 1.Alberta Diabetes InstituteUniversity of AlbertaEdmontonCanada

Personalised recommendations