Skip to main content

The Evolution of Protein Interaction Networks

  • Protocol
  • First Online:
Data Mining in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 696))

Abstract

The availability of high-throughput methods to detect protein interactions made construction of comprehensive protein interaction networks for several important model organisms possible. Many studies have since focused on uncovering the structural principles of these networks and relating these structures to biological processes. On a global scale, there are striking similarities in the structure of different protein interaction networks, even when distantly related species, such as the yeast Saccharomyces cerevisiae and the fruit fly Drosophila melanogaster, are compared. However, there is also considerable variance in network structures caused by the gain and loss of genes and mutations which alter the interaction behavior of the encoded proteins. Here, we focus on the current state of knowledge on the structure of protein interaction networks and the evolutionary processes that shaped these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monod J (1968) On symmmetry and function in biological systems. Nobel symposium 11, Symmetry and Function of Biological Systems at the Macromolecular Level. 1527

    Google Scholar 

  2. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  CAS  PubMed  Google Scholar 

  3. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  Google Scholar 

  4. Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  CAS  PubMed  Google Scholar 

  5. Fry DC (2006) Protein-protein interactions as targets for small molecule drug discovery. Biopolymers 84:535–552

    Article  CAS  PubMed  Google Scholar 

  6. Kiemer L, Cesareni G (2007) Comparative interactomics: comparing apples and pears? Trends Biotechnol 25:448–454

    Article  CAS  PubMed  Google Scholar 

  7. Chothia C, Janin J (1975) Principles of protein-protein recognition. Nature 256:705–708

    Article  CAS  PubMed  Google Scholar 

  8. Larsen TA, Olson AJ, Goodsell DS (1998) Morphology of protein-protein interfaces. Structure 6:421–427

    Article  CAS  PubMed  Google Scholar 

  9. Nooren IMA, Thornton JM (2003) Diversity of protein-protein interactions. EMBO J 22:3486–3492

    Article  CAS  PubMed  Google Scholar 

  10. Pawson T (2003) Organization of cell-regulatory systems through modular-protein-interaction domains. Philos Transact A Math Phys Eng Sci 361:1251–1262

    Article  CAS  PubMed  Google Scholar 

  11. Nooren IMA, Thornton JM (2003) Structural characterisation and functional significance of transient protein-protein interactions. J Mol Biol 325:991–1018

    Article  CAS  PubMed  Google Scholar 

  12. Teichmann SA (2002) The constraints protein-protein interactions place on sequence divergence. J Mol Biol 324:399–407

    Article  CAS  PubMed  Google Scholar 

  13. Mintseris J, Weng Z (2005) Structure, function, and evolution of transient and obligate protein-protein interactions. Proc Natl Acad Sci USA 102:10930–10935

    Article  CAS  PubMed  Google Scholar 

  14. Doolittle RF (1995) The multiplicity of domains in proteins. Annu Rev Biochem 64:287–314

    Article  CAS  PubMed  Google Scholar 

  15. Moore AD, Björklund AK, Ekman D et al (2008) Arrangements in the modular evolution of proteins. Trends Biochem Sci 33:444–451

    Article  CAS  PubMed  Google Scholar 

  16. Kummerfeld SK, Teichmann SA (2005) Relative rates of gene fusion and fission in multi-domain proteins. Trends Genet 21:25–30

    Article  CAS  PubMed  Google Scholar 

  17. Finn RD, Marshall M, Bateman A (2005) iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions. Bioinformatics 21:410–412

    Article  CAS  PubMed  Google Scholar 

  18. Stein A, Russell RB, Aloy P (2005) 3did: interacting protein domains of known three-dimensional structure. Nucleic Acids Res 33:D413–D417

    Article  CAS  PubMed  Google Scholar 

  19. Schuster-Böckler B, Bateman A (2007) Reuse of structural domain-domain interactions in protein networks. BMC Bioinform 8:259

    Article  Google Scholar 

  20. Koonin EV, Wolf YI, Karev GP (2002) The structure of the protein universe and genome evolution. Nature 420:218–223

    Article  CAS  PubMed  Google Scholar 

  21. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  22. Weiner J, Moore AD, Bornberg-Bauer E (2008) Just how versatile are domains? BMC Evol Biol 8:285

    Article  PubMed  Google Scholar 

  23. Basu MK, Carmel L, Rogozin IB et al (2008) Evolution of protein domain promiscuity in eukaryotes. Genome Res 18:449–461

    Article  CAS  PubMed  Google Scholar 

  24. Tuncbag N, Kar G, Keskin O et al (2009) A survey of available tools and web servers for analysis of protein-protein interactions and interfaces. Brief Bioinform 10:217–232

    Article  CAS  PubMed  Google Scholar 

  25. Young KH (1998) Yeast two-hybrid: so many interactions, (in) so little time. Biol Reprod 58:302–311

    Article  CAS  PubMed  Google Scholar 

  26. Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  CAS  PubMed  Google Scholar 

  27. Ito T, Chiba T, Ozawa R et al (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci 98:4569–4574

    Article  CAS  PubMed  Google Scholar 

  28. Arifuzzaman M, Maeda M, Itoh A et al (2006) Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res 16:686–691

    Article  CAS  PubMed  Google Scholar 

  29. Rain JC, Selig L, Reuse HD et al (2001) The protein-protein interaction map of Helicobacter pylori. Nature 409:211–215

    Article  CAS  PubMed  Google Scholar 

  30. Giot L, Bader JS, Brouwer C et al (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736

    Article  CAS  PubMed  Google Scholar 

  31. Li S, Armstrong CM, Bertin N et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    Article  CAS  PubMed  Google Scholar 

  32. LaCount DJ, Vignali M, Chettier R et al (2005) A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438:103–107

    Article  CAS  PubMed  Google Scholar 

  33. Parrish JR, Yu J, Liu G et al (2007) A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol 8:R130

    Article  PubMed  Google Scholar 

  34. Stelzl U, Worm U, Lalowski M et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968

    Article  CAS  PubMed  Google Scholar 

  35. Bork P, Jensen LJ, von Mering C et al (2004) Protein interaction networks from yeast to human. Curr Opin Struct Biol 14:292–299

    Article  CAS  PubMed  Google Scholar 

  36. Deane CM, Salwiński Ł, Xenarios I et al (2002) Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics 1:349–356

    Article  CAS  PubMed  Google Scholar 

  37. Hart GT, Ramani AK, Marcotte EM (2006) How complete are current yeast and human protein-interaction networks? Genome Biol 7:120

    Article  PubMed  Google Scholar 

  38. Yu H, Braun P, Yildirim MA et al (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322:104–110

    Article  CAS  PubMed  Google Scholar 

  39. Yook S, Oltvai ZN, Barabási A (2004) Functional and topological characterization of protein interaction networks. Proteomics 4:928–942

    Article  CAS  PubMed  Google Scholar 

  40. Han JJ, Dupuy D, Bertin N et al (2005) Effect of sampling on topology predictions of protein-protein interaction networks. Nat Biotechnol 23:839–844

    Article  CAS  PubMed  Google Scholar 

  41. Han JJ, Bertin N, Hao T et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430:88–93

    Article  CAS  PubMed  Google Scholar 

  42. Jin G, Zhang S, Zhang X et al (2007) Hubs with network motifs organize modularity dynamically in the protein-protein interaction network of yeast. PLoS ONE 2:e1207

    Article  PubMed  Google Scholar 

  43. Ispolatov I, Yuryev A, Mazo I et al (2005) Binding properties and evolution of homodimers in protein-protein interaction networks. Nucleic Acids Res 33:3629–3635

    Article  CAS  PubMed  Google Scholar 

  44. Lukatsky DB, Shakhnovich BE, Mintseris J et al (2007) Structural similarity enhances interaction propensity of proteins. J Mol Biol 365:1596–1606

    Article  CAS  PubMed  Google Scholar 

  45. Pastor-Satorras R, Smith E, Solé RV (2003) Evolving protein interaction networks through gene duplication. J Theor Biol 222:199–210

    Article  CAS  PubMed  Google Scholar 

  46. Evlampiev K, Isambert H (2008) Conservation and topology of protein interaction networks under duplication-divergence evolution. Proc Natl Acad Sci USA 105:9863–9868

    Article  CAS  PubMed  Google Scholar 

  47. Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci USA 102:13773–13778

    Article  CAS  PubMed  Google Scholar 

  48. Pagel M, Meade A, Scott D (2007) Assembly rules for protein networks derived from phylogenetic-statistical analysis of whole genomes. BMC Evol Biol 7(Suppl 1):S16

    Article  PubMed  Google Scholar 

  49. Pereira-Leal JB, Teichmann SA (2005) Novel specificities emerge by stepwise duplication of functional modules. Genome Res 15:552–559

    Article  CAS  PubMed  Google Scholar 

  50. Beltrao P, Serrano L (2007) Specificity and evolvability in eukaryotic protein interaction networks. PLoS Comput Biol 3:e25

    Article  PubMed  Google Scholar 

  51. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  52. Lynch M, O’Hely M, Walsh B et al (2001) The probability of preservation of a newly arisen gene duplicate. Genetics 159:1789–1804

    CAS  PubMed  Google Scholar 

  53. Berg J, Lässig M, Wagner A (2004) Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications. BMC Evol Biol 4:51

    Article  PubMed  Google Scholar 

  54. Gamsjaeger R, Liew CK, Loughlin FE et al (2007) Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci 32:63–70

    Article  CAS  PubMed  Google Scholar 

  55. Mészáros B, Simon I, Dosztányi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5:e1000376

    Article  PubMed  Google Scholar 

  56. Neduva V, Russell RB (2005) Linear motifs: evolutionary interaction switches. FEBS Lett 579:3342–3345

    Article  CAS  PubMed  Google Scholar 

  57. Fraser HB, Wall DP, Hirsh AE (2003) A simple dependence between protein evolution rate and the number of protein-protein interactions. BMC Evol Biol 3:11

    Article  PubMed  Google Scholar 

  58. Fraser HB, Hirsh AE (2004) Evolutionary rate depends on number of protein-protein interactions independently of gene expression level. BMC Evol Biol 4:13

    Article  PubMed  Google Scholar 

  59. Jordan IK, Wolf YI, Koonin EV (2003) No simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol Biol 3:1

    Article  PubMed  Google Scholar 

  60. Bloom JD, Adami C (2003) Apparent dependence of protein evolutionary rate on number of interactions is linked to biases in protein-protein interactions data sets. BMC Evol Biol 3:21

    Article  PubMed  Google Scholar 

  61. Kim PM, Lu LJ, Xia Y et al (2006) Relating three-dimensional structures to protein networks provides evolutionary insights. Science 314:1938–1941

    Article  CAS  PubMed  Google Scholar 

  62. Guelzim N, Bottani S, Bourgine P et al (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31:60–63

    Article  CAS  PubMed  Google Scholar 

  63. Wuchty S, Oltvai ZN, Barabási AL (2003) Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat Genet 35:176–179

    Article  CAS  PubMed  Google Scholar 

  64. Amoutzias GD, Robertson DL, Oliver SG et al (2004) Convergent evolution of gene networks by single-gene duplications in higher eukaryotes. EMBO Rep 5:274–279

    Article  CAS  PubMed  Google Scholar 

  65. Deeds EJ, Ashenberg O, Gerardin J et al (2007) Robust protein protein interactions in crowded cellular environments. Proc Natl Acad Sci USA 104:14952–14957

    Article  CAS  PubMed  Google Scholar 

  66. Noguchi CT, Schechter AN et al (1985) Sickle hemoglobin polymerization in solution and in cells. Annu Rev Biophys Chem 14:239–263

    Article  CAS  Google Scholar 

  67. Kuriyan J, Eisenberg D (2007) The origin of protein interactions and allostery in colocalization. Nature 450:983–990

    Article  CAS  PubMed  Google Scholar 

  68. Wang M, Caetano-Anollés G (2009) The evolutionary mechanics of domain organization in proteomes and the rise of modularity in the protein world. Structure 17:66–78

    Article  CAS  PubMed  Google Scholar 

  69. Bennett MJ, Choe S, Eisenberg D (1994) Domain swapping: entangling alliances between proteins. Proc Natl Acad Sci USA 91:3127–3131

    Article  CAS  PubMed  Google Scholar 

  70. Bennett MJ, Schlunegger MP, Eisenberg D (1995) 3D domain swapping: a mechanism for oligomer assembly. Protein Sci 4:2455–2468

    Article  CAS  PubMed  Google Scholar 

  71. Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838–849

    Article  CAS  PubMed  Google Scholar 

  72. Cesareni G, Ceol A, Gavrila C et al (2005) Comparative interactomics. FEBS Lett 579:1828–1833

    Article  CAS  PubMed  Google Scholar 

  73. Kelley BP, Sharan R, Karp R et al (2005) Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci USA 100:11394–11399

    Article  Google Scholar 

  74. Sharan R, Suthram S, Kelley RM et al (2005) Conserved patterns of protein interaction in multiple species. Proc Natl Acad Sci USA 102:1974–1979

    Article  CAS  PubMed  Google Scholar 

  75. Gerke M, Bornberg-Bauer E, Jiang X et al (2006) Finding common protein interaction patterns across organisms. Evol Bioinform Online 2:45–52

    Google Scholar 

  76. Aloy P (2007) Shaping the future of interactome networks. Genome Biol 8:316

    Article  PubMed  Google Scholar 

  77. Ideker T, Valencia A (2006) Bioinformatics in the human interactome project. Bioinformatics 22:2973–2974

    Article  CAS  PubMed  Google Scholar 

  78. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  Google Scholar 

  79. Hernandez-Toro J, Prieto C, las Rivas JD (2007) APID2NET: unified interactome graphic analyzer. Bioinformatics 23:2495–2497

    Article  CAS  PubMed  Google Scholar 

  80. Wu J, Vallenius T, Ovaska K et al (2009) Integrated network analysis platform for protein-protein interactions. Nat Methods 6:75–77

    Article  CAS  PubMed  Google Scholar 

  81. Suthram S, Shlomi T, Ruppin E et al (2006) A direct comparison of protein interaction confidence assignment schemes. BMC Bioinform 7:360

    Article  Google Scholar 

  82. Bader GD, Betel D, Hogue CWV (2003) BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 31:248–250

    Article  CAS  PubMed  Google Scholar 

  83. Stark C, Breitkreutz B, Reguly T et al (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539

    Article  CAS  PubMed  Google Scholar 

  84. Xenarios I, Rice DW, Salwinski L et al (2000) DIP: the database of interacting proteins. Nucleic Acids Res 28:289–291

    Article  CAS  PubMed  Google Scholar 

  85. Peri S, Navarro JD, Kristiansen TZ et al (2004) Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res 32:D497–D501

    Article  CAS  PubMed  Google Scholar 

  86. Hermjakob H, Montecchi-Palazzi L, Lewington C et al (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32:D452–D455

    Article  CAS  PubMed  Google Scholar 

  87. Chatr-aryamontri A, Ceol A, Palazzi L et al (2007) MINT: the Molecular INTeraction database. Nucleic Acids Resm 35:D572–D574

    Article  CAS  Google Scholar 

  88. Pagel P, Kovac S, Oesterheld M et al (2005) The MIPS mammalian protein-protein interaction database. Bioinformatics 21:832–834

    Article  CAS  PubMed  Google Scholar 

  89. Raghavachari B, Tasneem A, Przytycka TM et al (2008) DOMINE: a database of protein domain interactions. Nucleic Acids Res 36:D656–D661

    Article  CAS  PubMed  Google Scholar 

  90. Brown KR, Jurisica I (2007) Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol 8:R95

    Article  PubMed  Google Scholar 

  91. Keskin O, Nussinov R, Gursoy A (2008) PRISM: protein-protein interaction prediction by structural matching. Methods Mol Biol 484:505–521

    Article  CAS  PubMed  Google Scholar 

  92. McDowall MD, Scott MS, Barton GJ (2009) PIPs: human protein-protein interaction prediction database. Nucleic Acids Res 37:D651–D656

    Article  CAS  PubMed  Google Scholar 

  93. Han K, Park B, Kim H et al (2004) HPID: the human protein interaction database. Bioinformatics 20:2466–2470

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schüler, A., Bornberg-Bauer, E. (2011). The Evolution of Protein Interaction Networks. In: Hamacher, M., Eisenacher, M., Stephan, C. (eds) Data Mining in Proteomics. Methods in Molecular Biology, vol 696. Humana Press. https://doi.org/10.1007/978-1-60761-987-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-987-1_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-986-4

  • Online ISBN: 978-1-60761-987-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics