Production of Tissue-Engineered Skin and Oral Mucosa for Clinical and Experimental Use

  • Sheila MacNeil
  • Joanna Shepherd
  • Louise Smith
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 695)

Abstract

Since the early 1990s, our understanding of how epithelial and stromal cells interact in 3D tissue-engineered constructs has led to tissue-engineered skin and oral mucosa models, which are beginning to deliver benefit in the clinic (usually in small-scale reconstructive surgery procedures) but have a great deal to offer for in vitro investigations. These 3D tissue-engineered models can be used for a wide variety of purposes such as dermato- and mucotoxicity, wound healing, examination of pigmentation and melanoma biology, and in particular, a recent development from this laboratory, as a model of bacterially infected skin. Models can also be used to investigate specific skin disease processes. In this chapter, we describe the basic methodology for producing 3D tissue-engineered skin and oral mucosa based on de-epidermised acellular human dermis, and we give examples of how these models can be used for a variety of applications.

Key words

Tissue-engineered skin Tissue-engineered oral mucosa Pigmentation Melanoma invasion Infected skin Wound healing 

References

  1. 1.
    MacNeil, S. (2007) Progress and opportunities for tissue-engineered skin. Nature 445, 874–880.PubMedCrossRefGoogle Scholar
  2. 2.
    MacNeil, S. (2007) Skin tissue engineering, in Tissue engineering using ceramics and polymers (Boccaccini, A. R., and Gough, J., Eds.), pp 375–403, Woodhead Publishing Limited, Cambridge.Google Scholar
  3. 3.
    Sahota, P. S., Burn, J. L., Heaton, M., Freedlander, E., Suvarna, S. K., Brown, N. J., and MacNeil, S. (2003) Development of a reconstructed human skin model for angiogenesis. Wound Repair Regen. 11, 275–284.PubMedCrossRefGoogle Scholar
  4. 4.
    Bhargava, S., Patterson, J. M., Inman, R. D., MacNeil, S., and Chapple, C. R. (2008) Tissue-engineered buccal mucosa urethroplasty-clinical outcomes. Eur. Urol. 53, 1263–1269.PubMedCrossRefGoogle Scholar
  5. 5.
    Moustafa, M., Simpson, C., Glover, M., Dawson, R. A., Tesfaye, S., Creagh, F. M., Haddow, D., Short, R., Heller, S., and MacNeil, S. (2004) A new autologous keratinocyte dressing treatment for non-healing diabetic neuropathic foot ulcers. Diabet. Med. 21, 786–789.PubMedCrossRefGoogle Scholar
  6. 6.
    Bhargava, S., Chapple, C. R., Bullock, A. J., Layton, C., and Macneil, S. (2004) Tissue-engineered buccal mucosa for substitution urethroplasty. BJU Int. 93, 807–811.PubMedCrossRefGoogle Scholar
  7. 7.
    Ghosh, M. M., Boyce, S., Layton, C., Freedlander, E., and MacNeil, S. (1997) A comparison of the methodologies for the preparation of human epidermal-dermal composites. Ann. Plast. Surg. 39, 390–404.PubMedCrossRefGoogle Scholar
  8. 8.
    Chakrabarty, K. H., Dawson, R. A., Harris, P., Layton, C., Babu, M., Gould, L., Phillips, J., Leigh, I., Green, C., Freedlander, E., and MacNeil, S. (1999) Development of autologous human dermal-epidermal composites based on sterilized human allodermis for clinical use. Br. J. Dermatol. 141, 811–823.PubMedCrossRefGoogle Scholar
  9. 9.
    Huang, Q., Dawson, R. A., Pegg, D. E., Kearney, J. N., and MacNeil, S. (2004) Use of peracetic acid to sterilize human donor skin for production of acellular dermal matrices for clinical use. Wound Repair Regen. 12, 276–287.PubMedCrossRefGoogle Scholar
  10. 10.
    Ralston, D. R., Layton, C., Dalley, A. J., Boyce, S., Freedlander, E., and MacNeil, S. (1999) The requirement for basement membrane antigens in the production of human epidermal/dermal composites in vitro. Br. J. Dermatol. 140, 605–615.PubMedCrossRefGoogle Scholar
  11. 11.
    Chakrabarty, K. H., Heaton, M., Dalley, A. J., Dawson, R. A., Freedlander, E., Khaw, P. T., and MacNeil, S. (2001) Keratinocyte-driven contraction of reconstituted human skin. Wound Repair Regen. 9, 95–106.PubMedCrossRefGoogle Scholar
  12. 12.
    Dawson, R. A., Goberdhan, N. J., Freedlander, E., and MacNeil, S. (1996) Influence of extracellular matrix proteins on human keratinocyte attachment, proliferation and transfer to a dermal wound model. Burns 22, 93–100.PubMedCrossRefGoogle Scholar
  13. 13.
    Eves, P., Katerinaki, E., Simpson, C., Layton, C., Dawson, R., Evans, G., and MacNeil, S. (2003) Melanoma invasion in reconstructed human skin is influenced by skin cells – investigation of the role of proteolytic enzymes. Clin. Exp. Metastasis 20, 685–700.PubMedCrossRefGoogle Scholar
  14. 14.
    Eves, P., Layton, C., Hedley, S., Dawson, R. A., Wagner, M., Morandini, R., Ghanem, G., and MacNeil, S. (2000) Characterization of an in vitro model of human melanoma invasion based on reconstructed human skin. Br. J. Dermatol. 142, 210–222.PubMedCrossRefGoogle Scholar
  15. 15.
    Harrison, C. A., Gossiel, F., Layton, C. M., Bullock, A. J., Johnson, T., Blumsohn, A., and MacNeil, S. (2006) Use of an in vitro model of tissue-engineered skin to investigate the mechanism of skin graft contraction. Tissue Eng. 12, 3119–3133.PubMedCrossRefGoogle Scholar
  16. 16.
    Harrison, C. A., Heaton, M. J., Layton, C. M., and MacNeil, S. (2006) Use of an in vitro model of tissue-engineered human skin to study keratinocyte attachment and migration in the process of reepithelialization. Wound Repair Regen. 14, 203–209.PubMedCrossRefGoogle Scholar
  17. 17.
    Hernon, C., Harrison, C. A., Thornton, D. J. A., and MacNeil, S. (2007) Enhancement of keratinocyte performance in production of tissue engineered skin by use of low-calcium medium. Wound Repair Regen. 15, 718–726.PubMedCrossRefGoogle Scholar
  18. 18.
    MacNeil, S., Eves, P., Richardson, B., Molife, R., Lorigan, P., Wagner, M., Layton, C., Morandini, R., and Ghanem, G. (2000) Oestrogenic steroids and melanoma cell interaction with adjacent skin cells influence invasion of melanoma cells in vitro. Pigment Cell Res. 13(8), 68–72.CrossRefGoogle Scholar
  19. 19.
    Ralston, D. R., Layton, C., Dalley, A. J., Boyce, S. G., Freedlander, E., and MacNeil, S. (1997) Keratinocytes contract human dermal extracellular matrix and reduce soluble fibronectin production by fibroblasts in a skin composite model. Br. J. Plast. Surg. 50, 408–415.PubMedCrossRefGoogle Scholar
  20. 20.
    Thornton, D. J. A., Harrison, C. A., Heaton, M. J., Bullock, A. J., and MacNeil, S. (2008) Inhibition of keratinocyte-driven contraction of tissue-engineered skin in vitro by calcium chelation and early restraint but not submerged culture. J. Burn Care Res. 29, 369–377.PubMedCrossRefGoogle Scholar
  21. 21.
    Harrison, C. A., Layton, C. M., Hau, Z., Bullock, A. J., Johnson, T. S., and MacNeil, S. (2007) Transglutaminase inhibitors induce hyperproliferation and parakeratosis in tissue-engineered skin. Br. J. Dermatol. 156, 247–257.PubMedCrossRefGoogle Scholar
  22. 22.
    Bullock, A. J., Barker, A. T., Coulton, L., and Macneil, S. (2007) The effect of induced biphasic pulsed currents on re-epithelialization of a novel wound healing model. Bioelectromagnetics 28, 31–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Harrison, C. A., and MacNeil, S. (2008) The mechanism of skin graft contraction: an update on current research and potential future therapies. Burns 34, 153–163.PubMedCrossRefGoogle Scholar
  24. 24.
    Shepherd, J., Douglas, I., Rimmer, S., Swanson, L., and MacNeil, S. (2009) Development of 3-dimensional tissue engineerd models of bacterial infected human skin wounds. Tissue Eng. Part C Methods 15(3), 475–484.PubMedCrossRefGoogle Scholar
  25. 25.
    Eves, P. C., Bullett, N. A., Haddow, D., Beck, A. J., Layton, C., Way, L., Shard, A. G., Gawkrodger, D. J., and MacNeil, S. (2008) Simplifying the delivery of melanocytes and keratinocytes for the treatment of vitiligo using a chemically defined carrier dressing. J. Invest. Dermatol. 128, 1554–1564.PubMedCrossRefGoogle Scholar
  26. 26.
    Hedley, S. J., Layton, C., Heaton, M., Chakrabarty, K. H., Dawson, R. A., Gawkrodger, D. J., and MacNeil, S. (2002) Fibroblasts play a regulatory role in the control of pigmentation in reconstructed human skin from skin types I and II. Pigment Cell Res. 15, 49–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Balafa, C., Smith-Thomas, L., Phillips, J., Moustafa, M., George, E., Blount, M., Nicol, S., Westgate, G., and MacNeil, S. (2005) Dopa oxidase activity in the hair, skin and ocular melanocytes is increased in the presence of stressed fibroblasts. Exp. Dermatol. 14, 363–372.PubMedCrossRefGoogle Scholar
  28. 28.
    Eves, P. C., Beck, A. J., Shard, A. G., and MacNeil, S. (2005) A chemically defined surface­ for the co-culture of melanocytes and keratinocytes. Biomaterials 26, 7068–7081.PubMedCrossRefGoogle Scholar
  29. 29.
    Katerinaki, E., Evans, G. S., Lorigan, P. C., and MacNeil, S. (2003) TNF-alpha increases human melanoma cell invasion and migration in vitro: the role of proteolytic enzymes. Br. J. Cancer 89, 1123–1129.PubMedCrossRefGoogle Scholar
  30. 30.
    Eves, P., Haycock, J., Layton, C., Wagner, M., Kemp, H., Szabo, M., Morandini, R., Ghanem, G., García-Borrón, J. C., Jiménez-Cervantes, C., and MacNeil, S. (2003) Anti-inflammatory and anti-invasive effects of α-melanocyte-stimulating hormone in human melanoma cells. Br. J. Cancer 89, 2004–2015.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sheila MacNeil
    • 1
  • Joanna Shepherd
    • 1
  • Louise Smith
    • 1
  1. 1.Department of Materials Science and Engineering, Kroto Research InstituteUniversity of SheffieldSheffieldUK

Personalised recommendations