Advertisement

Integration of Proteomic and Metabolomic Profiling as well as Metabolic Modeling for the Functional Analysis of Metabolic Networks

  • Patrick May
  • Nils Christian
  • Oliver Ebenhöh
  • Wolfram Weckwerth
  • Dirk WaltherEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 694)

Abstract

The integrated analysis of different omics-level data sets is most naturally performed in the context of common process or pathway association. In this chapter, the two basic approaches for a metabolic pathway-centric integration of proteomics and metabolomics data are described: the knowledge-based approach relying on existing metabolic pathway information, and a data-driven approach that aims to deduce functional (pathway) associations directly from the data. Relevant algorithmic approaches for the generation of metabolic networks of model organisms, their functional analysis, database resources, visualization and analysis tools will be described. The use of proteomics data in the process of metabolic network reconstruction will be discussed.

Key words

Network reconstruction Genome annotation Metabolic modeling Network expansion Flux balance analysis Expression analysis Time-series data analysis Granger causality Systems biology 

Notes

Acknowledgements

This work was supported by BMBF-funded GoFORSYS systems biology project. We wish to thank Falk Schreiber for generously providing us with Fig. 2.

References

  1. 1.
    Reed, J. L., Famili, I., Thiele, I., and Palsson, B. O. (2006) Towards multidimensional genome annotation. Nat Rev Genet 7, 130–141.PubMedCrossRefGoogle Scholar
  2. 2.
    Feist, A. M., Herrgard, M. J., Thiele, I., Reed, J. L., and Palsson, B. O. (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7, 129–143.PubMedGoogle Scholar
  3. 3.
    Moxon, S., Schwach, F., Dalmay, T., Maclean, D., Studholme, D. J., and Moulton, V. (2008) A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 24, 2252–2253.PubMedCrossRefGoogle Scholar
  4. 4.
    Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, L. A., Rhee, S. Y., and Stitt, M. (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37, 914–939.PubMedCrossRefGoogle Scholar
  5. 5.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J Mol Biol 215, 403–410.PubMedGoogle Scholar
  6. 6.
    Altschul, S. F., and Koonin, E. V. (1998) Iterated profile searches with PSI-BLAST – a tool for discovery in protein databases. Trends Biochem Sci 23, 444–447.PubMedCrossRefGoogle Scholar
  7. 7.
    Soding, J., Biegert, A., and Lupas, A. N. (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33, W244–W248.PubMedCrossRefGoogle Scholar
  8. 8.
    Remm, M., Storm, C. E., and Sonnhammer, E. L. (2001) Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol 314, 1041–1052.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen, F., Mackey, A. J., Stoeckert, C. J., Jr., and Roos, D. S. (2006) OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34, D363–D368.PubMedCrossRefGoogle Scholar
  10. 10.
    Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., and Yamanishi, Y. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36, D480–D484.PubMedCrossRefGoogle Scholar
  11. 11.
    Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C., and Kanehisa, M. (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35, W182–W185.PubMedCrossRefGoogle Scholar
  12. 12.
    Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., and Lopez, R. (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33, W116–W120.PubMedCrossRefGoogle Scholar
  13. 13.
    Handorf, T., Ebenhoh, O., and Heinrich, R. (2005) Expanding metabolic networks: scopes of compounds, robustness, and evolution. J Mol Evol 61, 498–512.PubMedCrossRefGoogle Scholar
  14. 14.
    Kruse, K., and Ebenhoh, O. (2008) Comparing flux balance analysis to network expansion: producibility, sustainability and the scope of compounds. Genome Inform 20, 91–101.PubMedCrossRefGoogle Scholar
  15. 15.
    Handorf, T., and Ebenhoh, O. (2007) MetaPath Online: a web server implementation of the network expansion algorithm. Nucleic Acids Res 35, W613–W618.PubMedCrossRefGoogle Scholar
  16. 16.
    Reed, J. L., Patel, T. R., Chen, K. H., Joyce, A. R., Applebee, M. K., Herring, C. D., Bui, O. T., Knight, E. M., Fong, S. S., and Palsson, B. O. (2006) Systems approach to refining genome annotation. Proc Natl Acad Sci U S A 103, 17480–17484.PubMedCrossRefGoogle Scholar
  17. 17.
    Satish Kumar, V., Dasika, M. S., and Maranas, C. D. (2007) Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 8, 212.PubMedCrossRefGoogle Scholar
  18. 18.
    Green, M. L., and Karp, P. D. (2004) A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5, 76.PubMedCrossRefGoogle Scholar
  19. 19.
    Christian, N., May, P., Kempa, S., Handorf, T., and Ebenhoh, O. (2009) An integrative approach towards completing genome-scale metabolic networks. Mol Biosyst 5, 1889–1903. DOI:  10.1039/b915913b.PubMedCrossRefGoogle Scholar
  20. 20.
    Caspi, R., Foerster, H., Fulcher, C. A., Kaipa, P., Krummenacker, M., Latendresse, M., Paley, S., Rhee, S. Y., Shearer, A. G., Tissier, C., Walk, T. C., Zhang, P., and Karp, P. D. (2008) The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 36, D623–D631.PubMedCrossRefGoogle Scholar
  21. 21.
    Manichaikul, A., Ghamsari, L., Hom, E. F., Lin, C., Murray, R. R., Chang, R. L., Balaji, S., Hao, T., Shen, Y., Chavali, A. K., Thiele, I., Yang, X., Fan, C., Mello, E., Hill, D. E., Vidal, M., Salehi-Ashtiani, K., and Papin, J. A. (2009) Metabolic network analysis integrated with transcript verification for sequenced genomes. Nat Methods 6, 589–592.PubMedCrossRefGoogle Scholar
  22. 22.
    May, P., Wienkoop, S., Kempa, S., Usadel, B., Christian, N., Rupprecht, J., Weiss, J., Recuenco-Munoz, L., Ebenhoh, O., Weckwerth, W., and Walther, D. (2008) Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii. Genetics 179, 157–166.PubMedCrossRefGoogle Scholar
  23. 23.
    Castellana, N. E., Payne, S. H., Shen, Z., Stanke, M., Bafna, V., and Briggs, S. P. (2008) Discovery and revision of Arabidopsis genes by proteogenomics. Proc Natl Acad Sci U S A 105, 21034–21038.PubMedCrossRefGoogle Scholar
  24. 24.
    Stanke, M., and Morgenstern, B. (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33, W465–W467.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang, P., Foerster, H., Tissier, C. P., Mueller, L., Paley, S., Karp, P. D., and Rhee, S. Y. (2005) MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol 138, 27–37.PubMedCrossRefGoogle Scholar
  26. 26.
    Keseler, I. M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I. T., Peralta-Gil, M., and Karp, P. D. (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33, D334–D337.PubMedCrossRefGoogle Scholar
  27. 27.
    Mueller, L. A., Zhang, P., and Rhee, S. Y. (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132, 453–460.PubMedCrossRefGoogle Scholar
  28. 28.
    Christie, K. R., Weng, S., Balakrishnan, R., Costanzo, M. C., Dolinski, K., Dwight, S. S., Engel, S. R., Feierbach, B., Fisk, D. G., Hirschman, J. E., Hong, E. L., Issel-Tarver, L., Nash, R., Sethuraman, A., Starr, B., Theesfeld, C. L., Andrada, R., Binkley, G., Dong, Q., Lane, C., Schroeder, M., Botstein, D., and Cherry, J. M. (2004) Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res 32, D311–D314.PubMedCrossRefGoogle Scholar
  29. 29.
    May, P., Christian, J. O., Kempa, S., and Walther, D. (2009) ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii. BMC Genomics 10, 209.PubMedCrossRefGoogle Scholar
  30. 30.
    Usadel, B., Nagel, A., Thimm, O., Redestig, H., Blaesing, O. E., Palacios-Rojas, N., Selbig, J., Hannemann, J., Piques, M. C., Steinhauser, D., Scheible, W. R., Gibon, Y., Morcuende, R., Weicht, D., Meyer, S., and Stitt, M. (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138, 1195–1204.PubMedCrossRefGoogle Scholar
  31. 31.
    Goffard, N., and Weiller, G. (2006) Extending MapMan: application to legume genome arrays. Bioinformatics 22, 2958–2959.PubMedCrossRefGoogle Scholar
  32. 32.
    Junker, B. H., Klukas, C., and Schreiber, F. (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7, 109.PubMedCrossRefGoogle Scholar
  33. 33.
    Batagelj, V., Mrvar, A. (1998) Program for large scale network analysis. Connections 21, 47–57.Google Scholar
  34. 34.
    Fell, D. A. (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286 (Pt 2), 313–330.PubMedGoogle Scholar
  35. 35.
    Varma, A., and Palsson, B. O. (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60, 3724–3731.PubMedGoogle Scholar
  36. 36.
    Schuster, S., Fell, D. A., and Dandekar, T. (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18, 326–332.PubMedCrossRefGoogle Scholar
  37. 37.
    Kauffman, K. J., Prakash, P., and Edwards, J. S. (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14, 491–496.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee, J. M., Gianchandani, E. P., and Papin, J. A. (2006) Flux balance analysis in the era of metabolomics. Brief Bioinform 7, 140–150.PubMedCrossRefGoogle Scholar
  39. 39.
    Hoppe, A., Hoffmann, S., and Holzhutter, H. G. (2007) Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Syst Biol 1, 23.PubMedCrossRefGoogle Scholar
  40. 40.
    Colijn, C., Brandes, A., Zucker, J., Lun, D. S., Weiner, B., Farhat, M. R., Cheng, T. Y., Moody, D. B., Murray, M., and Galagan, J. E. (2009) Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol 5, e1000489.PubMedCrossRefGoogle Scholar
  41. 41.
    Grafahrend-Belau, E., Klukas, C., Junker, B. H., and Schreiber, F. (2009) FBA-SimVis: interactive visualisation of constraint-based metabolic models. Bioinformatics 25, 2755–2757.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee, J. M., Gianchandani, E. P., Eddy, J. A., and Papin, J. A. (2008) Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 4, e1000086.PubMedCrossRefGoogle Scholar
  43. 43.
    Boyle, N. R., and Morgan, J. A. (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol 3, 4.PubMedGoogle Scholar
  44. 44.
    Klamt, S., Saez-Rodriguez, J., and Gilles, E. D. (2007) Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol 1, 2.PubMedCrossRefGoogle Scholar
  45. 45.
    Becker, S. A., Feist, A. M., Mo, M. L., Hannum, G., Palsson, B. O., and Herrgard, M. J. (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2, 727–738.PubMedCrossRefGoogle Scholar
  46. 46.
    Schmitt, W. A., Jr., Raab, R. M., and Stephanopoulos, G. (2004) Elucidation of gene interaction networks through time-lagged correlation analysis of transcriptional data. Genome Res 14, 1654–1663.PubMedCrossRefGoogle Scholar
  47. 47.
    Granger, C. W. J. (1980) Testing for causality: a personal viewpoint. J Econ Dyn and Contr 2, 329–352.CrossRefGoogle Scholar
  48. 48.
    Lozano, A. C., Abe, N., Liu, Y., and Rosset, S. (2009) Grouped graphical Granger modeling for gene expression regulatory networks discovery. Bioinformatics 25, i110–i118.PubMedCrossRefGoogle Scholar
  49. 49.
    Mukhopadhyay, N. D., and Chatterjee, S. (2007) Causality and pathway search in microarray time series experiment. Bioinformatics 23, 442–449.PubMedCrossRefGoogle Scholar
  50. 50.
    Steinfath, M., Repsilber, D., Scholz, M., Walther, D., and Selbig, J. (2007) Integrated data analysis for genome-wide research, EXS 97, 309–329.PubMedGoogle Scholar
  51. 51.
    Sauro, H. M. and Lugalls, B. (2004) Conserva-tion analysis in biochemical networks: Computational issues for software writes. Biophys Chem 109, 1–15.PubMedCrossRefGoogle Scholar
  52. 52.
    Gevorgyan, A., Poolman, M. G., and Fell, D. A. (2008) Detection of stoichiometric inconsistencies in biomolecular models. Bioinformatics 24, 2245–2251.PubMedCrossRefGoogle Scholar
  53. 53.
    Henry, C. S., Jankowski, M. D., Broadbelt, L. J., and Hatzimanikatis, V. (2006) Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys J 90, 1453–1461.PubMedCrossRefGoogle Scholar
  54. 54.
    Kummel, A., Panke, S., and Heinemann, M. (2006) Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinformatics 7, 512.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Patrick May
    • 1
  • Nils Christian
    • 1
  • Oliver Ebenhöh
    • 1
  • Wolfram Weckwerth
    • 2
  • Dirk Walther
    • 1
    Email author
  1. 1.Max-Planck-Institute for Molecular Plant PhysiologyPotsdam-GolmGermany
  2. 2.Molecular Systems BiologyUniversity of ViennaViennaAustria

Personalised recommendations