Analysis of High-Throughput ELISA Microarray Data

  • Amanda M. White
  • Don S. Daly
  • Richard C. Zangar
Part of the Methods in Molecular Biology book series (MIMB, volume 694)


Our research group develops analytical methods and software for the high-throughput analysis of quantitative enzyme-linked immunosorbent assay (ELISA) microarrays. ELISA microarrays differ from DNA microarrays in several fundamental aspects and most algorithms for analysis of DNA microarray data are not applicable to ELISA microarrays. In this review, we provide an overview of the steps involved in ELISA microarray data analysis and how the statistically sound algorithms we have developed provide an integrated software suite to address the needs of each data-processing step. The algorithms discussed are available in a set of open-source software tools (

Key words

ELISA Microarray Standard curve Bioinformatics Calibration ProMAT ELISA-BASE 



This work was funded by the National Institute of Biomedical Imaging & Bioengineering (R01 EB006177) and by the National Cancer Institute (U01 CA117378).


  1. 1.
    White A.M., Daly, D.S., Varnum, S.M., Anderson, K.K., Bollinger, N., and Zangar, R.C. (2006) ProMAT: protein microarray analysis tool. Bioinformatics 22, 1278–1279.PubMedCrossRefGoogle Scholar
  2. 2.
    Zangar R.C., Daly, D.S., White, A.M., Servoss, S.L., Tan, R., and Collett, J.R. (2009) ProMAT Calibrator: a tool for reducing experimental bias in antibody microarrays. Journal of Proteome Research 8, 3937–3943.PubMedCrossRefGoogle Scholar
  3. 3.
    White A.M., Collett, J.L., Seurynck-Servoss, S.L., Daly, D.S., and Zangar, R.C. (2009) ELISA-BASE: an integrated bioinformatics tool for analyzing and tracking ELISA microarray data. Bioinformatics 25, 1566–1567.PubMedCrossRefGoogle Scholar
  4. 4.
    Saal, L.H., Troein, C., Vallon-Christersson, J., Gruvberger, S., Borg, Å., and Peterson, C. (2002) BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome Biology 3, software0003.1–software0003.6.CrossRefGoogle Scholar
  5. 5.
    Daly D.S., Anderson, K.K., White, A.M., Gonzalez, R.M., Varnum, S.M., and Zangar, R.C. (2008) Predicting protein concentrations with ELISA microarray assays, monotonic splines and Monte Carlo simulation. Statistical Applications in Genetics and Molecular Biology 7, Article 21.CrossRefGoogle Scholar
  6. 6.
    Zangar, R., Daly, D., and White, A. (2006) ELISA microarray technology as a high-throughput system for cancer biomarker validation. Expert Review of Proteomics 3, 37–44.PubMedCrossRefGoogle Scholar
  7. 7.
    Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C.A., Causton, H.C., Gaasterland, T., Glenisson, P., Holstege, F.C., Kim, I. F., Markowitz, V., Matese, J.C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., Vilo, J., and Vingron, M. (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genetics 29, 365–371.PubMedCrossRefGoogle Scholar
  8. 8.
    Myers R.H. (1990) Classical and modern regression with applications. Boston, MA: PWS-KENT Publishing Company.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Amanda M. White
    • 1
  • Don S. Daly
    • 1
  • Richard C. Zangar
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations