Lentiviral Transgenesis

  • Terunaga Nakagawa
  • Casper C. Hoogenraad
Part of the Methods in Molecular Biology book series (MIMB, volume 693)


Conventional DNA injection-based methods are successful in generating transgenic animals and have remained nearly unchanged over the last few decades. Lentiviral vectors are alternative powerful tool for generating transgenic animals, in part because of their ability to incorporate into genomic DNA with high efficiency. This chapter describes lentiviral vectors used to generate transgenic mice and rats. We discuss the protocols and methods in high enough detail such that researchers who are accustomed to creating transgenic animals by pronuclear injection can smoothly transition to using lentiviral transgenesis. We will briefly outline the general principle of the lentiviral expression system and focus specifically on the methods used to generate lentiviral vectors, produce lentiviral particles, inject lentivirus into the fertilized oocytes, and transplant them into the pseudopregnant females. In addition to the surgical aspects of the experiment, we will describe methods to produce high titer lentivirus. Finally, we will discuss the limitations of lentiviral transgenesis and summarize information that will be useful for troubleshooting.

Key words

Lentivirus vector Transgenic mouse Transgenic rat Lentiviral transgenesis Microinjection shRNA Protocol 



T.N. is supported by John Merck Fund, Hellman Foundation, and NARSAD. C.C.H. is supported by The Prinses Beatrix Fonds, Netherlands Organization for Scientific Research (NWO-ALW and NWO-CW-ECHO), Netherlands Organization for Health Research and Development (ZonMw-VIDI, ZonMw-TOP), Human Frontier Science Program Career Development Award (HFSP-CDA), and European Science Foundation (European Young Investigators (EURYI) Award).


  1. 1.
    Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A 77, 7380–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Hammer RE, Pursel VG, Rexroad CE, Jr., et al. (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315, 680–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Mullins JJ, Peters J, Ganten D (1990) Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 344, 541–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Aitman TJ, Critser JK, Cuppen E, et al. (2008) Progress and prospects in rat genetics: a community view. Nat Genet 40, 516–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Park F (2007) Lentiviral vectors: are they the future of animal transgenesis? Physiol Genomics 31, 159–73.PubMedCrossRefGoogle Scholar
  6. 6.
    Pfeifer A (2004) Lentiviral transgenesis. Transgenic Res 13, 513–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Naldini L, Blomer U, Gallay P, et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Singer O, Tiscornia G, Ikawa M, Verma IM (2006) Rapid generation of knockdown transgenic mice by silencing lentiviral vectors. Nat Protoc 1, 286–92.PubMedCrossRefGoogle Scholar
  10. 10.
    Pfeifer A, Hofmann A (2009) Lentiviral transgenesis. Methods Mol Biol 530, 391–405.PubMedCrossRefGoogle Scholar
  11. 11.
    Yang SH, Cheng PH, Banta H, et al. (2008) Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453, 921–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Scott BB, Lois C (2005) Generation of tissue-specific transgenic birds with lentiviral vectors. Proc Natl Acad Sci U S A 102,16443–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhao C, Takita J, Tanaka Y, et al. (2001) Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105, 587–97.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoogenraad CC, Koekkoek B, Akhmanova A, et al. (2002) Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Nat Genet 32, 116–27.PubMedCrossRefGoogle Scholar
  15. 15.
    Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the Mouse Embryo: A Laboratory Manual. 3rd Edition. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  16. 16.
    Pinkert CA (2002) Transgenic Animal Technology: A Laboratory Handbook. 2nd Edition. Academic Press, San Diego.Google Scholar
  17. 17.
    Rubinson DA, Dillon CP, Kwiatkowski AV, et al. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33, 401–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72, 8150–7.PubMedGoogle Scholar
  19. 19.
    Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A 90, 8033–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73, 2886–92.PubMedGoogle Scholar
  21. 21.
    Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101, 173–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Nakagawa T, Feliu-Mojer MI, Wulf P, Lois C, Sheng M, Hoogenraad CC (2006) Generation of lentiviral transgenic rats expressing glutamate receptor interacting protein 1 (GRIP1) in brain, spinal cord and testis. J Neurosci Methods 152, 1–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Pfeifer A, Ikawa M, Dayn Y, Verma IM (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci U S A 99, 2140–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Dittgen T, Nimmerjahn A, Komai S, et al. (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci U S A 101, 18206–11.PubMedCrossRefGoogle Scholar
  25. 25.
    Singer O, Verma IM (2008) Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr Gene Ther 8, 483–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Tiscornia G, Singer O, Verma IM (2006) Design and cloning of lentiviral vectors expressing small interfering RNAs. Nat Protoc 1, 234–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Tiscornia G, Singer O, Verma IM (2006) Production and purification of lentiviral vectors. Nat Protoc 1, 241–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Herold MJ, van den Brandt J, Seibler J, Reichardt HM (2008) Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats. Proc Natl Acad Sci U S A 105, 18507–12.PubMedCrossRefGoogle Scholar
  29. 29.
    Dickins RA, McJunkin K, Hernando E, et al. (2007) Tissue-specific and reversible RNA interference in transgenic mice. Nat Genet 39, 914–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Dann CT (2007) New technology for an old favorite: lentiviral transgenesis and RNAi in rats. Transgenic Res 16, 571–80.PubMedCrossRefGoogle Scholar
  31. 31.
    Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204, 63–113.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Terunaga Nakagawa
    • 1
  • Casper C. Hoogenraad
    • 2
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of NeuroscienceErasmus Medical CenterRotterdamThe Netherlands

Personalised recommendations