Advertisement

Inducible Transgenic Mouse Models

  • Thomas L. SaundersEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 693)

Abstract

Inducible transgenic mouse models allow for the activation of genes in specific cells and tissues at specific times. Expression levels are dependent on the dose of the agent administered. Effective experimental models are characterized by low background levels of the regulated gene and induction to high levels with sub-physiological levels of inducing agents. The most commonly used methods to control gene expression in mouse models are based on the tet-operon/repressor bi-transgenic system and the estrogen receptor (ER) ligand-binding domain. Less commonly used systems to control gene expression in transgenic mice take advantage of the ligand-binding domain of the progesterone receptor, and the lac and GAL4 inducible systems. The tetracycline-regulated transgenic models are typically designed to activate the expression of the gene of interest in a specific cell type at a specific point in time. The ER is most commonly fused with Cre recombinase, although it can be used with transcription factors, kinases, etc., that are active in the nucleus. Cre-ER transgenes allow for the induction of recombinase activity in specific cells at defined time points. Cre recombinase is most often found in combination with conditional alleles to inactivate gene expression. When used for gene activation, Cre removes stop cassettes from transgenes and thus allows the expression of reporter or other molecules. Thus, the tetracycline-regulated and Cre-ER systems are complementary in mouse models, with utility in the cell-specific activation and inactivation of gene expression.

Key words

Doxycycline tTA rtTA Tamoxifen Cre-ER Transgenic mice Gene expression 

References

  1. 1.
    Badea T.C., Wang Y., Nathans J. (2003) A noninvasive genetic/pharmacologic strategy for visualizing cell morphology and clonal relationships in the mouse. J Neurosci 23, 2314–22PubMedGoogle Scholar
  2. 2.
    Hayashi, S., McMahon, A.P. (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244, 305–18PubMedCrossRefGoogle Scholar
  3. 3.
    Lobe, C.G., Koop, K.E., Kreppner, W., Lomeli, H., Gertsenstein, M., Nagy, A. (1999) Z/AP, a double reporter for cre-mediated recombination. Dev Biol 208, 281–92PubMedCrossRefGoogle Scholar
  4. 4.
    Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21, 70–1PubMedCrossRefGoogle Scholar
  5. 5.
    Furth, P.A., St. Onge, L., Boger, H., Gruss, P., Gossen, M., Kistner, A., Bujard, H., Hennighausen, L. (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci U S A 91, 9302–6PubMedCrossRefGoogle Scholar
  6. 6.
    Kistner, A., Gossen, M., Zimmermann, F., Jerecic, J., Ullmer, C., Lubbbert, H., Bujard, H. (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci USA 93, 10933–8PubMedCrossRefGoogle Scholar
  7. 7.
    Urlinger, S., Baron, U., Thellmann, M., Hasan, M.T., Bujard H., Hillen, W. (2000) Exploring the sequence space for tetracycline-dependent dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA 97, 7963–8PubMedCrossRefGoogle Scholar
  8. 8.
    Freundlieb, S., Schirra-Müller, C., Bujard, H. (1999) A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J Gene Med 1, 4–12PubMedCrossRefGoogle Scholar
  9. 9.
    Bockamp, E., Christel, C., Hameyer, D., Khobta, A., Maringer, M., Reis, M., Heck, R., Cabezas-Wallscheid, N., Epe, B., Oesch-Bartlomowicz, B., Kaina, B., Schmitt, S., Eshkind, L. (2007) Generation and characteri­zation of tTS-H4: a novel transcriptional repressor that is compatible with the reverse tetracycline-controlled TET-ON system. J Gene Med 9, 308–18PubMedCrossRefGoogle Scholar
  10. 10.
    Yao, F., Pomahac, B., Visovatti, S., Chen, M., Johnson, S., Augustinova, H., Svensjo, T., Eriksson, E. (2007) Systemic and localized reversible regulation of transgene expression by tetracycline with tetR-mediated trans­cription repression switch. J Surg Res 138, 267–74PubMedCrossRefGoogle Scholar
  11. 11.
    Dobrovolsky, V.N., Heflich, R.H. (2007) On the use of the T-REx tetracycline-inducible gene expression system in vivo. Biotechnol Bioeng 98, 719–23PubMedCrossRefGoogle Scholar
  12. 12.
    Szulc, J., Wiznerowicz, M., Sauvain, M.O., Trono, D., Aebischer, P. (2006) A versatile tool for conditional gene expression and knock­down. Nat Methods 3, 109–16PubMedCrossRefGoogle Scholar
  13. 13.
    Zhu, Z., Ma, B., Homer, R.J., Zheng, T., Elias, J.A. (2001) Use of the tetracycline-controlled transcriptional silencer (tTS) to eliminate transgene leak in inducible overexpression transgenic mice. J Biol Chem 276, 25222–9PubMedCrossRefGoogle Scholar
  14. 14.
    Wiznerowicz, M., Jakobsson, J., Szulc, J., Liao, S., Quazzola, A., Beermann, F., Aebischer, P., Trono, D. (2007) The Krüppel-associated box repressor domain can trigger de novo promoter methylation during mouse early embryogenesis. J Biol Chem 282, 34535–41PubMedCrossRefGoogle Scholar
  15. 15.
    Martindale, J.J., Fernandez, R., Thuerauf, D., Whittaker, R., Gude, N., Sussman, M.A., Glembotski, C.C. (2006) Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circ Res 98, 1186–93PubMedCrossRefGoogle Scholar
  16. 16.
    Scholl, F.A., Dumesic, P.A., Khavari, P.A. (2004) Mek1 alters epidermal growth and differentiation. Cancer Res 64, 6035–40PubMedCrossRefGoogle Scholar
  17. 17.
    Gu, H., Marth, J.D., Orban, P.C., Mossmann, H., Rajewsky, K. (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265, 103–6PubMedCrossRefGoogle Scholar
  18. 18.
    Metzger, D., Clifford, J., Chiba, H., Chambon, P. (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92, 6991–5PubMedCrossRefGoogle Scholar
  19. 19.
    Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D., Chambon, P. (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 93, 10887–90PubMedCrossRefGoogle Scholar
  20. 20.
    Feil, R., Wagner, J., Metzger, D., Chambon, P. (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237, 752–7PubMedCrossRefGoogle Scholar
  21. 21.
    Shimshek, D.R., Kim, J., Hübner, M.R., Spergel, D.J., Buchholz, F., Casanova, E., Stewart, A.F., Seeburg, P.H., Sprengel, R. (2002) Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 32, 19–26PubMedCrossRefGoogle Scholar
  22. 22.
    Casanova, E., Fehsenfeld, S., Lemberger, T., Shimshek, D.R., Sprengel, R., Mantamadiotis, T. (2002) ER-based double iCre fusion protein allows partial recombination in forebrain. Genesis 34, 208–14PubMedCrossRefGoogle Scholar
  23. 23.
    Nir, T., Melton, D.A., Dor, Y. (2007) Recovery from diabetes in mice by beta cell regeneration. J Clin Invest 117, 2553–61PubMedCrossRefGoogle Scholar
  24. 24.
    Chen, Q., Nakajima, A., Meacham, C., Tang, Y.P. (2006) Elevated cholecystokininergic tone constitutes an important molecular/neuronal mechanism for the expression of anxiety in the mouse. Proc Natl Acad Sci USA 103, 3881–6PubMedCrossRefGoogle Scholar
  25. 25.
    Novak, A., Guo, C., Yang, W., Nagy, A., Lobe, C.G. (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147–55PubMedCrossRefGoogle Scholar
  26. 26.
    Vintersten, K., Monetti, C., Gertsenstein, M., Zhang, P., Laszlo, L., Biechele, S., Nagy, A. (2004) Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis 40, 241–6PubMedCrossRefGoogle Scholar
  27. 27.
    Hochedlinger, K., Yamada, Y., Beard. C., Jaenisch, R. (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–77PubMedCrossRefGoogle Scholar
  28. 28.
    Niwa, H., Yamamura, K., Miyazaki, J. (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–9PubMedCrossRefGoogle Scholar
  29. 29.
    Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., Arnheim, N. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–4PubMedCrossRefGoogle Scholar
  30. 30.
    Guo, B., Bi, Y. (2002) Cloning PCR pro­ducts. An overview. Methods Mol Biol 192, 111–9PubMedGoogle Scholar
  31. 31.
    Truett, G.E., Heeger, P., Mynatt, R.L., Truett, A.A., Walker, J.A., Warman, M.L. (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29, 52–4PubMedGoogle Scholar
  32. 32.
    Kellendonk, C., Simpson, E.H., Polan, H.J., Malleret, G., Vronskaya, S., Winiger, V., Moore, H., Kandel, E.R. (2006) Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49, 603–15PubMedCrossRefGoogle Scholar
  33. 33.
    Kiermayer, C., Conrad, M., Schneider, M., Schmidt, J., Brielmeier, M. (2007) Optimization of spatiotemporal gene inactivation in mouse heart by oral application of tamoxifen citrate. Genesis 45, 11–16PubMedCrossRefGoogle Scholar
  34. 34.
    Chow, L.M.L., Zhang, J., Baker, S.J. (2008) Inducible Cre recombinase activity in mouse mature astrocytes and adult neural precursor cells. Transgenic Res 17, 919–28PubMedCrossRefGoogle Scholar
  35. 35.
    Ji, B., Song, J., Tsou, L., Bi, Y., Gaiser, S., Mortensen, R., Logsdon, C. (2008) Robust acinar cell transgene expression of CreErT via BAC recombineering. Genesis 46, 390–5PubMedCrossRefGoogle Scholar
  36. 36.
    Chen, B.Y., Janes, H.W., Chen, S. (2002) Computer programs for PCR primer design and analysis. Methods Mol Biol 192, 19–29PubMedGoogle Scholar
  37. 37.
    Hayward, A.M., Lemke, L.B., Bridgeford, E.C., Theve, E.J., Jackson, C.N., Cunliffe-Beamer, T.L., Marini, R.P. (2007) Biomethodology and surgical techniques. In: Fox, J., Barthold, S., Davisson, M., Newcomer, C., Quimby, F., Smith, A. (eds.) The mouse in biomedical research. Vol. 3. Academic Press, New York, pp. 437–88CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Transgenic Animal Model CoreUniversity of MichiganAnn ArborUSA

Personalised recommendations